222 research outputs found
Shock Waves in Nanomechanical Resonators
The dream of every surfer is an extremely steep wave propagating at the
highest speed possible. The best waves for this would be shock waves, but are
very hard to surf. In the nanoscopic world the same is true: the surfers in
this case are electrons riding through nanomechanical devices on acoustic waves
[1]. Naturally, this has a broad range of applications in sensor technology and
for communication electronics for which the combination of an electronic and a
mechanical degree of freedom is essential. But this is also of interest for
fundamental aspects of nano-electromechanical systems (NEMS), when it comes to
quantum limited displacement detection [2] and the control of phonon number
states [3]. Here, we study the formation of shock waves in a NEMS resonator
with an embedded two-dimensional electron gas using surface acoustic waves. The
mechanical displacement of the nano-resonator is read out via the induced
acoustoelectric current. Applying acoustical standing waves we are able to
determine the anomalous acoustocurrent. This current is only found in the
regime of shock wave formation. We ontain very good agreement with model
calculations.Comment: 14 Pages including 4 figure
High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep
SUMMARY: Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone mass. INTRODUCTION: Understanding the skeletal effects of environmental fluoride exposure especially under calcium stress remains an unmet need of critical importance. Therefore, we studied the skeletal phenotype of sheep chronically exposed to highly fluoridated water in the Kalahari Desert, where livestock is known to present with fragility fractures. METHODS: Dorper ewes from two flocks in Namibia were studied. Chemical analyses of water, blood and urine were executed for both cohorts. Skeletal phenotyping comprised micro-computer tomography (μCT), histological, histomorphometric, biomechanical, quantitative backscattered electron imaging (qBEI) and energy-dispersive X-ray (EDX) analysis. Analysis was performed in direct comparison with undecalcified human iliac crest bone biopsies of patients with fluoride-induced osteopathy. RESULTS: The fluoride content of water, blood and urine was significantly elevated in the Kalahari group compared to the control. Surprisingly, a significant decrease in both cortical and trabecular bones was found in sheep chronically exposed to fluoride. Furthermore, osteoid parameters and the degree and heterogeneity of mineralization were increased. The latter findings are reminiscent of those found in osteoporotic patients with treatment-induced fluorosis. Mechanical testing revealed a significant decrease in the bending strength, concurrent with the clinical observation of fragility fractures in sheep within an area of environmental fluoride exposure. CONCLUSIONS: Our data suggest that fluoride exposure with concomitant calcium deficit (i) may aggravate bone loss via reductions in mineralized trabecular and cortical bone mass and (ii) can cause fragility fractures and (iii) that the prevalence of skeletal fluorosis especially due to groundwater exposure should be reviewed in many areas of the world as low bone mass alone does not exclude fluorosis
Focusing of surface-acoustic-wave fields on (100) GaAs surfaces
Focused surface-acoustic waves (SAWs) provide a way to reach intense acoustic fields for electroand optoacoustic applications on semiconductors. We have investigated the focusing of SAWs by interdigital transducers (IDTs)deposited on (100)-oriented GaAs substrates. The focusing IDTs have curved fingers designed to account for the acoustic anisotropy of the substrate. Different factors that affect focusing, such as the aperture angle and the configuration of the IDT fingers, were systematically addressed. We show that the focusing performance can be considerably improved by appropriate choice of the IDT metal pads, which, under appropriate conditions, create an acoustic waveguide within the IDT. We demonstrate the generation of narrow (full width at half maximum of approx 15 µm), high-frequency (0.5 GHz), continuous SAW beams with vertical displacement as high as 4 nm collimated over distances that exceed 100 µm
Nonlinear response of a driven vibrating nanobeam in the quantum regime
We analytically investigate the nonlinear response of a damped doubly clamped
nanomechanical beam under static longitudinal compression which is excited to
transverse vibrations. Starting from a continuous elasticity model for the
beam, we consider the dynamics of the beam close to the Euler buckling
instability. There, the fundamental transverse mode dominates and a quantum
mechanical time-dependent effective single particle Hamiltonian for its
amplitude can be derived. In addition, we include the influence of a
dissipative Ohmic or super-Ohmic environment. In the rotating frame, a
Markovian master equation is derived which includes also the effect of the
time-dependent driving in a non-trivial way. The quasienergies of the pure
system show multiple avoided level crossings corresponding to multiphonon
transitions in the resonator. Around the resonances, the master equation is
solved analytically using Van Vleck perturbation theory. Their lineshapes are
calculated resulting in simple expressions. We find the general solution for
the multiple multiphonon resonances and, most interestingly, a bath-induced
transition from a resonant to an antiresonant behavior of the nonlinear
response.Comment: 25 pages, 5 figures, submitted to NJ
Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16.
Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2-/- mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this 'stress' keratin is regulated
Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response
Neutrophils and dendritic cells (DCs) converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4+ T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved
Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals
Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group\u27s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange
- …