77 research outputs found

    Characterization of microsporidian Ameson herrnkindi sp. nov. infecting Caribbean spiny lobsters Panulirus argus

    Get PDF
    The Caribbean spiny lobster Panulirus argus supports a large and valuable fishery in the Caribbean Sea. In 2007-2008, a rare microsporidian parasite with spore characteristics typical of the Ameson genus was detected in 2 spiny lobsters from southeast Florida (FL). However, the parasite species was not confirmed by molecular analyses. To address this deficiency, reported here are structural and molecular data on single lobsters displaying comparable ‘cotton-like’ abdominal muscle containing ovoid microsporidian spores found at different locations in FL in 2014 and 2018 and in Saint Kitts and Nevis Islands in 2017. In the lobster from 2014, multiple life stages consistent with an Ameson-like monokaryotic microsporidian were detected by transmission electron microscopy. A partial (1228 bp) small subunit (SSU) rRNA gene sequence showed each microsporidia to be identical and positioned it closest phylogenetically to Ameson pulvis in a highly supported clade also containing A. michaelis, A. metacarcini, A. portunus, and Nadelspora canceri. Using ecological, pathological, ultrastructural, and molecular data, the P. argus microsporidian has been assigned to a distinct species: Ameson herrnkindi

    Biophysical connectivity explains population genetic structure in a highly dispersive marine species

    Get PDF
    © 2016 Springer-Verlag Berlin Heidelberg Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster (Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall FST of 0.0016 (P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus (P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation (P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling

    Severe traumatic injury during long duration spaceflight: Light years beyond ATLS

    Get PDF
    Traumatic injury strikes unexpectedly among the healthiest members of the human population, and has been an inevitable companion of exploration throughout history. In space flight beyond the Earth's orbit, NASA considers trauma to be the highest level of concern regarding the probable incidence versus impact on mission and health. Because of limited resources, medical care will have to focus on the conditions most likely to occur, as well as those with the most significant impact on the crew and mission. Although the relative risk of disabling injuries is significantly higher than traumatic deaths on earth, either issue would have catastrophic implications during space flight. As a result this review focuses on serious life-threatening injuries during space flight as determined by a NASA consensus conference attended by experts in all aspects of injury and space flight

    Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling

    Get PDF
    In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features

    Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species

    Get PDF
    Abstract Background Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. Results Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. Conclusion Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops

    The benefits of strength training on musculoskeletal system health: practical applications for interdisciplinary care

    Get PDF
    Global health organizations have provided recommendations regarding exercise for the general population. Strength training has been included in several position statements due to its multi-systemic benefits. In this narrative review, we examine the available literature, first explaining how specific mechanical loading is converted into positive cellular responses. Secondly, benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly outlined for both common musculoskeletal disorders and primary prevention strategies

    A new pathogenic virus in the Caribbean spiny lobster Panulirus argus from the Florida Keys

    Get PDF
    A pathogenic virus was diagnosed from juvenile Caribbean spiny lobsters Panulirus argus from the Florida Keys. Moribund lobsters had characteristically milky hemolymph that did not clot. Altered hyalinocytes and semigranulocytes, but not granulocytes, were observed with light microscopy. Infected hemocytes had emarginated, condensed chromatin, hypertrophied nuclei and faint eosinophilic Cowdry-type-A inclusions. In some cases, infected cells were observed in soft connective tissues. With electron microscopy, unenveloped, nonoccluded, icosahedral virions (182 +/- 9 nm SD) were diffusely spread around the inner periphery of the nuclear envelope. Virions also occurred in loose aggregates in the cytoplasm or were free in the hemolymph. Assembly of the nucleocapsid occurred entirely within the nucleus of the infected cells. Within the virogenic stroma, blunt rod-like structures or whorls of electron-dense granular material were apparently associated with viral assembly. The prevalence of overt infections, defined as lethargic animals with milky hemolymph, ranged from 6 to 8 % with certain foci reaching prevalences of 37 %. The disease was transmissible to uninfected lobsters using inoculations of raw hemolymph from infected animals. Inoculated animals became moribund 5 to 7 d before dying and they began dying after 30 to 80 d post-exposure. The new virus is apparently widespread, infectious, and lethal to the Caribbean spiny lobster. Given the pathogenic nature of the virus, further characterization of the disease agent is warranted

    Transmission of Panulirus argus virus 1 (PaV1) and its effect on the survival of juvenile Caribbean spiny lobster

    Get PDF
    The Caribbean spiny lobster Panulirus argus, an important fisheries species, is host to Panulirus argus virus 1 (PaV1), a lethal, unclassified virus-the first found in any species of lobster-prevalent in juvenile lobsters. We describe a series of laboratory experiments aimed at assessing the likely modes of disease transmission, determining the survival of lobsters relative to each transmission pathway and identifying potential alternate hosts. Given evidence for lower prevalence of PaV1 in large lobsters, the effect of lobster size on susceptibility was also examined. Results demonstrated that PaV1 can be transmitted to juvenile lobsters via inoculation, ingestion of diseased tissue, contact with diseased lobsters and-among the smallest juveniles-through water over distances of a few meters. Contact and waterborne transmission, the most likely modes of transmission in the wild, were less efficient than inoculation or ingestion. Nevertheless, about half of the smallest lobsters in contact and waterborne trials contracted the disease and died within 3 mo. Other decapods that co-occur with P. argus (e.g. spotted lobster P. guttatus, stone crab Menippe mercenaria, channel crab Mithrax spinosissimus) did, not acquire the disease after inoculation with PaV1-infected hemolymph. Our results confirmed that PaV1 is highly infectious and lethal to juvenile P. argus, particularly early benthic juveniles in the wild, and, hence, is a threat to mariculture
    • …
    corecore