1,124 research outputs found

    Qualitative assessment of the writing process

    Get PDF
    A strong trend in the language arts is the emphasis placed on the involvement of-students in the language processes to extend their thinking and language abilities. Thus, their involvement needs to be described by qualitative means. Qualitative assessment is necessary in writing because there is a great deal that cannot be measured (Field, 1992). Assessment needs to be continuous and inseparable from instruction, therefore authentic (Tierney, Carter, & Desai, 1991; Valencia, 1990; Barclay & Breheny, 1994; Stone, 1995). Assessment must be an integral part of each day in order for teachers to plan instruction and communicate with parents and the students (Barclay & Breheny, 1994)

    Theoretical Description of Pulsed RYDMR: Refocusing Zero-Quantum and Single Quantum Coherences

    Get PDF
    A theoretical description of pulsed reaction yield detected magnetic resonance (RYDMR) is proposed. In RYDMR, magnetic resonance spectra of radical pairs (RPs) are indirectly detected by monitoring their recombination yield. Such a detection method is significantly more sensitive than conventional electron paramagnetic resonance (EPR), but design of appropriate pulse sequences for RYDMR requires additional effort because of a different observable. In this work various schemes for generating spin-echo like signals and detecting them by RYDMR are treated. Specifically, we consider refocusing of zero-quantum coherences (ZQCs) and single-quantum coherences (SQCs) by selective as well as by non-selective pulses and formulate a general analytical approach to pulsed RYDMR, which makes an efficient use of the product operator formalism. We anticipate that these results are of importance for RYDMR studies of elusive paramagnetic particles, notably, in organic semiconductors

    Site-selective measurement of coupled spin pairs in an organic semiconductor

    Get PDF
    From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet (S=0) and dark triplet quintet (S=1,2) configurations: This induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3–5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site selectivity can be achieved for organic spin pairs in a broad range of systems

    Lock-in detection for pulsed electrically detected magnetic resonance

    Get PDF
    We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped Silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the read-out of the spin state.Comment: 4 pages, 2 figure

    Probing the wave function and dynamics of the quintet multiexciton state with coherent control in a singlet fission material

    Get PDF
    High-spin states play a key role in chemical reactions found in nature. In artificial molecular systems, singlet fission produces a correlated triplet-pair state, a spin-bearing excited state that can be harnessed for more efficient solar-energy conversion and photocatalysis. In particular, triplet-pair states with overall quintet character (total spin S=2) have been discovered, but many of the fundamental properties of these biexciton states remain unexplored. The net spin of these pair states makes spin-sensitive probes attractive for their characterization. Combined with their surprisingly long spin coherence (of order microseconds), this opens up techniques relying on coherent spin control. Here we apply coherent manipulation of triplet-pair states to (i) isolate their spectral signatures from coexisting free triplets and (ii) selectively couple quintet and triplet states to specific nuclear spins. Using this approach, we separate quintet and triplet transitions and extract the relaxation dynamics and hyperfine couplings of the fission-borne spin states. Our results highlight the distinct properties of correlated and free triplet excitons and demonstrate optically induced nuclear spin polarization by singlet fission

    Rare processes and coherent phenomena in crystals

    Get PDF
    We study coherent enhancement of Coulomb excitation of high energy particles in crystals. We develop multiple scattering theory description of coherent excitation which consistently incorporates both the specific resonant properties of particle-crystal interactions and the final/initial state interaction effects typical of the diffractive scattering. Possible applications to observation of induced radiative neutrino transitions are discussed.Comment: 8 pages, LaTe

    Di-electrons from η\eta meson Dalitz decay in proton-proton collisions

    Get PDF
    The reaction pp→ppη→ppÎłe+e− pp \to pp \eta \to pp \gamma e^+ e^- is discussed within a covariant effective meson-nucleon theory. The model is adjusted to data of the subreaction pp→ppηpp \to pp \eta. Our focus is on di-electrons from Dalitz decays of η\eta mesons, Î·â†’ÎłÎłâˆ—â†’Îłe+e−\eta\to \gamma \gamma^* \to\gamma e^+e^-, and the role of the corresponding transition form factor FÎ·ÎłÎłâˆ—F_{\eta \gamma \gamma^*}. Numerical results are presented for the intermediate energy kinematics of HADES experiments

    Impact of morphology on polaron delocalization in a semicrystalline conjugated polymer

    Get PDF
    We investigate the delocalization of holes in the semicrystalline conjugated polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) by directly measuring the hyperfine coupling between photogenerated polarons and bound nuclear spins using electron nuclear double resonance spectroscopy. An extrapolation of the corresponding oligomer spectra reveals that charges tend to delocalize over 4.0–4.8 nm with delocalization strongly dependent on molecular order and crystallinity of the PBTTT polymer thin films. Density functional theory calculations of hyperfine couplings confirm that long-range corrected functionals appropriately describe the change in coupling strength with increasing oligomer size and agree well with the experimentally measured polymer limit. Our discussion presents general guidelines illustrating the various pitfalls and opportunities when deducing polaron localization lengths from hyperfine coupling spectra of conjugated polymers

    The BioGRID Interaction Database: 2011 update

    Get PDF
    The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347 966 interactions (170 162 genetic, 177 804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23 000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48 831 human protein interactions that have been curated from 10 247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions

    One-pion transitions between heavy baryons in the constituent quark model

    Full text link
    Single pion transitions of S wave to S wave, P wave to S wave and P wave to P wave heavy baryons are analyzed in the framework of the Heavy Quark Symmetry limit (HQS). We use a constituent quark model picture for the light diquark system with an underlying SU(2N_{f}) X O(3) symmetry to reduce the number of the HQS coupling factors required to describe these transitions. We also use the quantum theory of angular momentum to rewrite the one-pion transitions constituent quark model results in a more general form using the 6j- and 9j-symbols. We finally estimate the decay rates of some single pion transitions between charm baryon states.Comment: Latex, 33 pages including 2 figures (Postscript). Some typos are corrected with minor changes. Two references were added to the final version which will appear in Phy. Rev.
    • 

    corecore