6,973 research outputs found

    Damping of dHvA oscillations and vortex-lattice disorder in the peak-effect region of strong type-II superconductors

    Full text link
    The phenomenon of magnetic quantum oscillations in the superconducting state poses several questions that still defy satisfactory answers. A key controversial issue concerns the additional damping observed in the vortex state. Here, we show results of \mu SR, dHvA, and SQUID magnetization measurements on borocarbide superconductors, indicating that a sharp drop observed in the dHvA amplitude just below H_{c2} is correlated with enhanced disorder of the vortex lattice in the peak-effect region, which significantly enhances quasiparticle scattering by the pair potential.Comment: 4 pages 4 figure

    An Overview of the Rotational Behavior of Metal--Poor Stars

    Full text link
    The present paper describes the behavior of the rotational velocity in metal--poor stars ([Fe/H]<-0.5 dex) in different evolutionary stages, based on Vsini values from the literature. Our sample is comprised of stars in the field and some Galactic globular clusters, including stars on the main sequence, the red giant branch (RGB), and the horizontal branch (HB). The metal--poor stars are, mainly, slow rotators, and their Vsini distribution along the HR diagram is quite homogeneous. Nevertheless, a few moderate to high values of Vsini are found in stars located on the main sequence and on the HB. We show that the overall distribution of Vsini values is basically independent of metallicity for the stars in our sample. In particular, the fast-rotating main sequence stars in our sample present similar rotation rates as their metal-rich counterparts, suggesting that some of them may actually be fairly young, in spite of their low metallicity, or else that at least some of them would be better classified as blue straggler stars. We do not find significant evidence of evolution in Vsini values as a function of position on the RGB; in particular, we do not confirm previous suggestions that stars close to the RGB tip rotate faster than their less evolved counterparts. While the presence of fast rotators among moderately cool blue HB stars has been suggested to be due to angular momentum transport from a stellar core that has retained significant angular momentum during its prior evolution, we find that any such transport mechanisms must likely operate very fast as the star arrives on the zero-age HB (ZAHB), since we do not find a link between evolution off the ZAHB and Vsini values. We present an extensive tabulation of all quantities discussed in this paper, including rotation velocities, temperatures, gravitieComment: 22 pages, 10 figure

    Boosting Higgs pair production in the bbˉbbˉb\bar{b}b\bar{b} final state with multivariate techniques

    Full text link
    The measurement of Higgs pair production will be a cornerstone of the LHC program in the coming years. Double Higgs production provides a crucial window upon the mechanism of electroweak symmetry breaking and has a unique sensitivity to the Higgs trilinear coupling. We study the feasibility of a measurement of Higgs pair production in the bbˉbbˉb\bar{b}b\bar{b} final state at the LHC. Our analysis is based on a combination of traditional cut-based methods with state-of-the-art multivariate techniques. We account for all relevant backgrounds, including the contributions from light and charm jet mis-identification, which are ultimately comparable in size to the irreducible 4b4b QCD background. We demonstrate the robustness of our analysis strategy in a high pileup environment. For an integrated luminosity of L=3\mathcal{L}=3 ab−1^{-1}, a signal significance of S/B≃3S/\sqrt{B}\simeq 3 is obtained, indicating that the bbˉbbˉb\bar{b}b\bar{b} final state alone could allow for the observation of double Higgs production at the High-Luminosity LHC.Comment: 47 pages, 22 figures. v2: updated references, added comparison of post-MVA kinematic distributions. v3: matches published version in EPJ

    Neutron-irradiation effects in LaO0.9F0.1FeAs superconductor

    Full text link
    The effect of atomic disorder induced by neutrons irradiation on superconducting and normal state properties of polycrystalline LaFeAsO_0.9F_0.1 was investigated. The irradiation of the sample by a moderate neutron fluence F = 1.6*1019 cm^-2 at Tirr = 50 +- 10 C leads to the suppression of superconductivity which recovers almost completely after annealing at temperatures Tann < 750 C. It is shown that the reduction of superconducting transition temperature Tc under atomic disordering is not determined solely by the value of Hall concentration nH, i.e. doping level, but is governed by the reduction of electronic relaxation time. This behavior can be described qualitatively by universal Abrikosov-Gorkov equation which presents evidence on the anomalous type of electrons pairing in Fe-based superconductors.Comment: 8 pages, 11 figure

    On Coordinate Transformations in Planar Noncommutative Theories

    Full text link
    We consider planar noncommutative theories such that the coordinates verify a space-dependent commutation relation. We show that, in some special cases, new coordinates may be introduced that have a constant commutator, and as a consequence the construction of Field Theory models may be carried out by an application of the standard Moyal approach in terms of the new coordinates. We apply these ideas to the concrete example of a noncommutative plane with a curved interface. We also show how to extend this method to more general situations.Comment: 20 pages, 1 figure. references adde
    • …
    corecore