73 research outputs found

    Loss of Cx43 in Murine Sertoli Cells Leads to Altered Prepubertal Sertoli Cell Maturation and Impairment of the Mitosis-Meiosis Switch.

    Get PDF
    Male factor infertility is a problem in today's society but many underlying causes are still unknown. The generation of a conditional Sertoli cell (SC)-specific connexin 43 (Cx43) knockout mouse line (SCCx43KO) has provided a translational model. Expression of the gap junction protein Cx43 between adjacent SCs as well as between SCs and germ cells (GCs) is known to be essential for the initiation and maintenance of spermatogenesis in different species and men. Adult SCCx43KO males show altered spermatogenesis and are infertile. Thus, the present study aims to identify molecular mechanisms leading to testicular alterations in prepubertal SCCx43KO mice. Transcriptome analysis of 8-, 10- and 12-day-old mice was performed by next-generation sequencing (NGS). Additionally, candidate genes were examined by qRT-PCR and immunohistochemistry. NGS revealed many significantly differentially expressed genes in the SCCx43KO mice. For example, GCspecific genes were mostly downregulated and found to be involved in meiosis and spermatogonial differentiation (e.g., Dmrtb1, Sohlh1). In contrast, SC-specific genes implicated in SC maturation and proliferation were mostly upregulated (e.g., Amh, Fshr). In conclusion, Cx43 in SCs appears to be required for normal progression of the first wave of spermatogenesis, especially for the mitosis-meiosis switch, and also for the regulation of prepubertal SC maturation

    Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis.

    Get PDF
    Naive pluripotency is manifest in the preimplantation mammalian embryo. Here we determine transcriptome dynamics of mouse development from the eight-cell stage to postimplantation using lineage-specific RNA sequencing. This method combines high sensitivity and reporter-based fate assignment to acquire the full spectrum of gene expression from discrete embryonic cell types. We define expression modules indicative of developmental state and temporal regulatory patterns marking the establishment and dissolution of naive pluripotency in vivo. Analysis of embryonic stem cells and diapaused embryos reveals near-complete conservation of the core transcriptional circuitry operative in the preimplantation epiblast. Comparison to inner cell masses of marmoset primate blastocysts identifies a similar complement of pluripotency factors but use of alternative signaling pathways. Embryo culture experiments further indicate that marmoset embryos utilize WNT signaling during early lineage segregation, unlike rodents. These findings support a conserved transcription factor foundation for naive pluripotency while revealing species-specific regulatory features of lineage segregation.We thank Peter Humphreys for assistance with imaging, and Samuel Jameson and staff for mouse husbandry. We are grateful to Charis Drummer, Ayako Sedohara, Akiko Shimada, Yuko Yamada, Ryo Oiwa, and Takeshi Kuge for technical support with marmoset embryo recovery. Illumina sequencing was provided by Bettina Haase and Dinko Pavlinic at the EMBL Genomics Core Facility. This work was supported by funding from the Wellcome Trust, the Genome Biology Unit of the European Molecular Biology Laboratory, BBSRC grants BB/G015678/1 and BB/M004023/1, an MRC Centenary Award, and the Louis Jeantet Foundation. A.S. is a Medical Research Council Professor.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.devcel.2015.10.01

    Oral bacteria in infective endocarditis requiring surgery: a retrospective analysis of 134 patients.

    Get PDF
    OBJECTIVES It has been reported that bacteria associated with infective endocarditis originate from the oral cavity in 26-45% of cases. However, little is known on the counts and species of periodontal microbiota in infected heart valves. The aim of this study was to identify these aspects of periodontal microbiota in infective endocarditis and to potentially initiate a dental extraction concept for periodontally compromised teeth concerning patients requiring heart valve surgery. MATERIALS AND METHODS The retrospective study group consisted of tissue samples from infected heart valves of 683 patients who had undergone heart valve surgery. Before patients had undergone cardiac surgery, the following laboratory tests confirmed the occurrence of endocarditis in all patients: blood cultures, echocardiography, electrocardiography, chest X-ray, and electrophoresis of the serum proteins. The specimens were aseptically obtained and deep frozen immediately following surgery. Microbiological diagnosis included proof of germs (dichotomous), species of germs, and source of germs (oral versus other). RESULTS Microbiota was detected in 134 (31.2%) out of 430 enrolled patients. Oral cavity was supposed to be the source in 10.4% of cases, whereas microbiota of the skin (57.5%) and gastrointestinal tract (GIT, 24.6%) were detected considerably more frequently. Moreover, periodontal bacteria belonged mostly to the Streptococci species and the yellow complex. None of the detected bacteria belonged to the red complex. CONCLUSION Most frequently, the skin and GIT represented the site of origin of the microbiota. Nevertheless, the oral cavity represented the source of IE in up to 10%. Consequently, it needs to be emphasized that a good level of oral hygiene is strongly recommended in all patients undergoing heart valve surgery in order to reduce the bacterial load in the oral cavity, thereby minimizing the hematogenous spread of oral microbiota. The prerequisites for conservative dental treatment versus radical tooth extraction must always be based on the patient's cooperation, and the clinical intraoral status on a sense of proportion in view of the overall clinical situation due to the underlying cardiac disease. CLINICAL RELEVANCE The oral cavity is a source of oral microbiota on infected heart valves. Patients requiring heart valve surgery should always undergo a critical evaluation of dental treatment affecting periodontally compromised teeth, favoring a systematic, conservative-leaning recall

    The cytokine receptor CRLF3 is a human neuroprotective EV-3 (Epo) receptor

    Get PDF
    The evolutionary conserved orphan cytokine receptor-like factor 3 (CRLF3) has been implicated in human disease, vertebrate hematopoiesis and insect neuroprotection. While its specific functions are elusive, experimental evidence points toward a general role in cell homeostasis. Erythropoietin (Epo) is a major regulator of vertebrate hematopoiesis and a general cytoprotective cytokine. Erythropoietic functions mediated by classical Epo receptor are understood in great detail whereas Epo-mediated cytoprotective mechanisms are more complex due to involvement of additional Epo receptors and a non-erythropoietic splice variant with selectivity for certain receptors. In the present study, we show that the human CRLF3 mediates neuroprotection upon activation with the natural Epo splice variant EV-3. We generated CRLF3 knock-out iPSC lines and differentiated them toward the neuronal lineage. While apoptotic death of rotenone-challenged wild type iPSC-derived neurons was prevented by EV-3, EV-3-mediated neuroprotection was absent in CRLF3 knock-out neurons. Rotenone-induced apoptosis and EV-3-mediated neuroprotection were associated with differential expression of pro-and anti-apoptotic genes. Our data characterize human CRLF3 as a receptor involved in Epo-mediated neuroprotection and identify CRLF3 as the first known receptor for EV-3

    Synthesis and physical properties of LaO1xFxFeAs\rm\bf LaO_{1-x}F_xFeAs

    Full text link
    We have prepared the newly discovered Fe-based superconducting material LaO1xFxFeAs\rm LaO_{1-x}F_xFeAs (0x0.20\leq x\leq 0.2) in polycrystalline form and have investigated the samples by means of structural, thermodynamic and transport measurements. Our investigations reveal a non superconducting phase at 0x0.040\leq x\lesssim0.04 which for x=0x=0 is characterized by a structural transition towards an orthorhombic distortion at Ts160T_s\approx 160 K and antiferromagnetic spin order at TN138T_N\approx138 K. Both transitions lead to strong anomalies in various transport properties as well as in magnetization and in specific heat. Remarkably, the transition temperatures are only weakly doping dependent up x0.04x\lesssim 0.04. However, the transitions are abruptly suppressed at x0.05x\geq0.05 in favour of a superconducting phase with a critical temperature Tc20T_c\gtrsim 20 K. Upon further increasing the F-doping TcT_c increases up to a maximum of Tc=26.8T_c=26.8 K at x=0.1x=0.1 which is followed by a decrease down to Tc10T_c\approx10 K at x0.15x\geq0.15

    Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart

    Get PDF
    BACKGROUND: In order to further distinguish unique from general functions of connexin43, we have generated mice in which the coding region of connexin43 was replaced by that of connexin26. RESULTS: Heterozygous mothers showed impaired mammary gland development responsible for decreased lactation and early postnatal death of the pups which could be partially rescued by wild type foster mothers. Only about 17% of the homozygous connexin43 knock-in connexin26 mice instead of 25% expected according to Mendelian inheritance, were born and only 6% survived to day 21 post partum and longer. Neonatal and adult connexin43 knock-in connexin26 mice exhibited slowed ventricular conduction in their hearts, i.e. similar but delayed electrophysiological abnormalities as connexin43 deficient mice. Furthermore, connexin43 knock-in connexin26 male and female mice were infertile and exhibited hypotrophic gonads. In testes, tubuli seminiferi were developed and spermatogonia as well as some primary spermatocytes were present, but further differentiated stages of spermatogenesis were absent. Ovaries of female connexin43 knock-in connexin26 mice revealed only few follicles and the maturation of follicles was completely impaired. CONCLUSION: The impaired gametogenesis of homozygous males and females can explain their infertility

    The endothelial-enriched lncRNA LINC00607 mediates angiogenic function

    Get PDF
    Long non-coding RNAs (lncRNAs) can act as regulatory RNAs which, by altering the expression of target genes, impact on the cellular phenotype and cardiovascular disease development. Endothelial lncRNAs and their vascular functions are largely undefined. Deep RNA-Seq and FANTOM5 CAGE analysis revealed the lncRNA LINC00607 to be highly enriched in human endothelial cells. LINC00607 was induced in response to hypoxia, arteriosclerosis regression in non-human primates, post-atherosclerotic cultured endothelial cells from patients and also in response to propranolol used to induce regression of human arteriovenous malformations. siRNA knockdown or CRISPR/Cas9 knockout of LINC00607 attenuated VEGF-A-induced angiogenic sprouting. LINC00607 knockout in endothelial cells also integrated less into newly formed vascular networks in an in vivo assay in SCID mice. Overexpression of LINC00607 in CRISPR knockout cells restored normal endothelial function. RNA- and ATAC-Seq after LINC00607 knockout revealed changes in the transcription of endothelial gene sets linked to the endothelial phenotype and in chromatin accessibility around ERG-binding sites. Mechanistically, LINC00607 interacted with the SWI/SNF chromatin remodeling protein BRG1. CRISPR/Cas9-mediated knockout of BRG1 in HUVEC followed by CUT&RUN revealed that BRG1 is required to secure a stable chromatin state, mainly on ERG-binding sites. In conclusion, LINC00607 is an endothelial-enriched lncRNA that maintains ERG target gene transcription by interacting with the chromatin remodeler BRG1 to ultimately mediate angiogenesis

    Eddy Study to Understand Physical-Chemical-Biological Coupling and the Biological Carbon Pump as a Function of Eddy Type off West Africa, Cruise No. M160, 23.11.2019 - 20.12.2019, Mindelo (Cabo Verde) - Mindelo (Cabo Verde)

    Get PDF
    Cruise M160 is part of concerted MOSES/REEBUS Eddy Study featuring three major research expeditions (M156, M160, MSM104). It aims to develop both a qualitative and quantitative understanding of the role of physical-chemical-biological coupling in eddies for the biological pump. The study is part of the MOSES “Ocean Eddies” event chain, which follows three major hypotheses to be addressed by the MOSES/REEBUS field campaigns: (1) Mesoscale and sub-mesoscale eddies play an important role in transferring energy along the energy cascade from the large-scale circulation to dissipation at the molecular level. (2) Mesoscale and sub-mesoscale eddies are important drivers in determining onset, magnitude and characteristics of biological productivity in the ocean and contribute significantly to global primary production and particle export and transfer to the deep ocean. (3) Mesoscale and sub-mesoscale eddies are important for shaping extreme biogeochemical environments (e.g., pH, oxygen) in the oceans, thus acting as a source/sink function for greenhouse gases. In contrast to the other two legs, MOSES Eddy Study II during M160 did not include any benthic work but focused entirely on the pelagic dynamics within eddies. It accomplished a multi-disciplinary, multi-parameter and multi-platform study of two discrete cyclonic eddies in an unprecedented complexity. The pre-cruise search for discrete eddies suitable for detailed study during M160 had already started a few months prior to the cruise. Remote sensing data products (sea surface height, sea surface temperature, ocean color/chlorophyll a) were used in combination with eddy detection algorithms and numerical modelling to identify and track eddies in the entire eddy field off West Africa. In addition, 2 gliders and 1 waveglider had been set out from Mindelo/Cabo Verde for pre-cruise mapping of the potential working area north of the Cabo Verdean archipelago. At the start of M160, a few suitable eddies – mostly of cyclonic type – had been identified, some of which were outside the safe operation range of the motorglider plane. As technical problems delayed the flight operations, the first eddy (center at 14.5°N/25°W) for detailed study was chosen to the southwest of the island of Fogo. It was decided to carry out a first hydrographic survey there followed by the deployment of a suite of instruments (gliders, waveglider, floats, drifter short-term mooring). Such instrumented, we left this first eddy and transited – via a strong anticyclonic feature southwest of the island of Santiago – to the region northeast of the island of Sal, i.e. in the working range of the glider plane. During the transit, a full suite of underway measurements as well as CTD/RO section along 22°W (16°-18.5°N) were carried in search for sub-surface expressions of anticyclonic eddy features. In the northeast, we had identified the second strong cyclonic eddy (center at 18°N/22.5°W) which was chosen for detailed study starting with a complete hydrographic survey (ADCP, CTD/RO, other routine station work). After completion of the mesoscale work program, we identified a strong frontal region at the southwestern rim of the cyclonic eddy, which was chosen for the first sub-mesoscale study with aerial observation component. There, the first dye release experiment was carried out which consisted of the dye release itself followed by an intense multi-platforms study of the vertical and horizontal spreading of the initial dye streak. This work was METEOR-Berichte, Cruise M160, Mindelo – Mindelo, 23.11.2019 4 – 20.12.2019 supported and partly guided by aerial observation of the research motorglider Stemme, which was still somewhat compromised by technical issues and meteorological conditions (high cloud cover, Saharan dust event). Nevertheless, this first dye release experiment was successful and showed rapid movement of the dynamic meandering front. After completion of work on this second eddy and execution of a focused sampling program at the Cape Verde Ocean Observation, RV METEOR returned to the first eddy for continuation of the work started there in the beginning of the cruise. This was accompanied by a relocation of the airbase of Stemme from the international airport of Sal to the domestic airport of Fogo. The further execution of the eddy study at this first eddy, which again included a complete hydrographic survey followed by a mesoscale eddy study with dye release, was therefore possible with aerial observations providing important guidance for work on RV METEOR. Overall, M160 accomplished an extremely intense and complex work program with 212 instrument deployments during station work, 137 h of observation with towed instruments and a wide range of underway measurements throughout the cruise. Up to about 30 individually tracked platforms (Seadrones, glider, wavegliders, drifters, floats) were in the water at the same time providing unprecedented and orchestrated observation capabilities in an eddy. All planned work components were achieved and all working groups acquired the expected numbers of instrument deployments and sampling opportunities
    corecore