920 research outputs found

    Speed-dependent collision effects on radar back-scattering from the ionosphere

    Get PDF
    The question whether the differences between fluctuation spectra for linearly speed-dependent and speed-independent collision frequencies could account for disagreements between rocket and incoherent scatter estimate was addressed. The basic theory used for computing the fluctuation spectrum is outlined. The speed-dependence of the charge-neutral collision frequency is discussed, with special emphasis on its derivation from the mobility measurements. Various developments of the computer code used for the computation of the fluctuation spectrum are described. The range of values of input parameters typical to the collision-dominated ionosphere are briefly described. The computational results are presented, and the significance and limitation of these results and the future scope of the research are discussed

    Role of root exudates in plant-microbe interactions

    Get PDF
    The interactions in the rhizosphere are leading to a highly structured microbial community which, to a great deal, is influenced by the root exudates of plant origin. In this review, we have included the different types of interaction with special regard to the root exudates’ function in such positive or negative interactions beween plants and both bacterial and fungal partners of the plant in the rhizosphere, including mycorrhiza, nitrogen-fixing symbionts, plant growth promoting rhizobacteria endophytes and biological control organisms as well as allelopathy, antimicrobial effects and effects on nematodes. The differences in root exudates induced by microbial associations, role of quorum sensing in structuring communitites and effect on biogeochemical cycles are reviewed. The focus is put on agricultural systems and implications for ecosystems on arable land are drawn

    Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments

    Get PDF
    Thermo-sensitive shape-memory polymers (SMP), which are capable of memorizing two or more different shapes, have generated significant research and technological interest. A triple-shape effect (TSE) of SMP can be activated e.g. by increasing the environmental temperature (Tenv), whereby two switching temperatures (Tsw) have to be exceeded to enable the subsequent shape changes from shape (A) to shape (B) and finally the original shape (C). In this work, we explored the thermally and magnetically initiated shape-memory properties of triple-shape nanocomposites with various compositions and particle contents using different shape-memory creation procedures (SMCP). The nanocomposites were prepared by the incorporation of magnetite nanoparticles into a multiphase polymer network matrix with grafted polymer network architecture containing crystallizable poly(ethylene glycol) (PEG) side chains and poly(ε-caprolactone) (PCL) crosslinks named CLEGC. Excellent triple-shape properties were achieved for nanocomposites with high PEG weight fraction when two-step programming procedures were applied. In contrast, single-step programming resulted in dual-shape properties for all investigated materials as here the temporary shape (A) was predominantly fixed by PCL crystallites

    Ball Comparison between Three Sixth Order Methods for Banach Space Valued Operators

    Get PDF
    Three methods of sixth order convergence are tackled for approximating the solution of an equation defined on the finitely dimensional Euclidean space. This convergence requires the existence of derivatives of, at least, order seven. However, only derivatives of order one are involved in such methods. Moreover, we have no estimates on the error distances, conclusions about the uniqueness of the solution in any domain, and the convergence domain is not sufficiently large. Hence, these methods have limited usage. This paper introduces a new technique on a general Banach space setting based only the first derivative and Lipschitz type conditions that allow the study of the convergence. In addition, we find usable error distances as well as uniqueness of the solution. A comparison between the convergence balls of three methods, not possible to drive with the previous approaches, is also given. The technique is possible to use with methods available in literature improving, consequently, their applicability. Several numerical examples compare these methods and illustrate the convergence criteria.This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia, under Grant No. D-540-130-1441. The authors, therefore, acknowledge with thanks DSR for technical and financial support.info:eu-repo/semantics/publishedVersio

    Wheat x Azotobacter x VA Mycorrhiza interactions towards plant nutrition and growth – a review

    Get PDF
    Nitrogen-fixing and phosphate-mobilizing bateria, as well as mycorrhizal fungi, can influence plant nutrition beneficially and thus be used as biofertilizers in agriculture. This paper briefly reviews the role of wheat genotypes in the interaction of wheat with soil microorganisms like phosphate solubilizing and nitrogen fixing bacteria, specifically Azotobacter sp., and with mycorrhizal fungi for the development of sustainable wheat crop production. The role of rhizosphere microorganisms and the mechanisms, factors affecting response of bioinoculants and the possibilities of breeding wheat genotypes responsive to these bioinoculants for sustainable wheat production in semi-arid tropics are discussed.

    On the Feasibility of Linear Discrete-Time Systems of the Green Scheduling Problem

    Get PDF
    Peak power consumption of buildings in large facilities like hospitals and universities becomes a big issue because peak prices are much higher than normal rates. During a power demand surge an automated power controller of a building may need to schedule ON and OFF different environment actuators such as heaters and air quality control while maintaining the state variables such as temperature or air quality of any room within comfortable ranges. The green scheduling problem asks whether a scheduling policy is possible for a system and what is the necessary and sufficient condition for systems to be feasible. In this paper we study the feasibility of the green scheduling problem for HVAC(Heating, Ventilating, and Air Conditioning) systems which are approximated by a discrete-time model with constant increasing and decreasing rates of the state variables. We first investigate the systems consisting of two tasks and find the analytical form of the necessary and sufficient conditions for such systems to be feasible under certain assumptions. Then we present our algorithmic solution for general systems of more than 2 tasks. Given the increasing and decreasing rates of the tasks, our algorithm returns a subset of the state space such that the system is feasible if and only if the initial state is in this subset. With the knowledge of that subset, a scheduling policy can be computed on the fly as the system runs, with the flexibility to add power-saving, priority-based or fair sub-policies

    Differential and temperature dependent regulation of ADP-glucose pyrophosphorylase by specific chromosome in wheat grains

    Get PDF
    A stock of disomic chromosome substitution (DCS) lines having specific chromosome of wheat variety C591 substituted in the background of rest of Chinese spring chromosomes, were used to analyze grain yield components as a function of enzyme activity of ADP–glucose pyrophosphorylase (AGPase), a starch biosynthesis enzyme in wheat grains. Associations between yield characteristics, grain growth rate (GGR) and AGPase enzyme activity of DCS lines suggested a major involvement of chromosome 3A, 4B, 7D and 2D in a temperature dependent manner. Assessment of AGPase assay at different developmental stages such as 14, 21, 28 days post anthesis (DPA) embodied that gene(s) for this enzyme are present on specific chromosomes and operate at different stages of grain development. The DCS line with 7D chromosome has a major contribution in determining the grain starch content. In this line, AGPase enzyme activity was highest at 21 DPA and was the most crucial determinant in its high GGR. Line 4B performed well at only early stage (14 DPA) suggesting that line 4B AGPase requires a lower temperature range for activation as compared to 7D line. Line 3A had substantially reduced (40%) test weights revealing the presence of few down-regulatory elements on chromosome 3A to reduce the activity of AGPase. The DCS line 2D showed higher test weights and grain number than all other lines ascribed to a consistent AGPase activity along with an efficient mechanism for translocation of photosynthates from source to sink. The chromosome 2D shows positive relation with yield attributes therefore, it can be employed to improve wheat productivity via analytical breeding programme

    Progressive Skeletonization: Trimming more fat from a network at initialization

    Full text link
    Recent studies have shown that skeletonization (pruning parameters) of networks \textit{at initialization} provides all the practical benefits of sparsity both at inference and training time, while only marginally degrading their performance. However, we observe that beyond a certain level of sparsity (approx 95%95\%), these approaches fail to preserve the network performance, and to our surprise, in many cases perform even worse than trivial random pruning. To this end, we propose an objective to find a skeletonized network with maximum {\em foresight connection sensitivity} (FORCE) whereby the trainability, in terms of connection sensitivity, of a pruned network is taken into consideration. We then propose two approximate procedures to maximize our objective (1) Iterative SNIP: allows parameters that were unimportant at earlier stages of skeletonization to become important at later stages; and (2) FORCE: iterative process that allows exploration by allowing already pruned parameters to resurrect at later stages of skeletonization. Empirical analyses on a large suite of experiments show that our approach, while providing at least as good a performance as other recent approaches on moderate pruning levels, provides remarkably improved performance on higher pruning levels (could remove up to 99.5%99.5\% parameters while keeping the networks trainable). Code can be found in https://github.com/naver/force

    Biodegradable PEG-PCL Nanoparticles for Co-delivery of MUC1 Inhibitor and Doxorubicin for the Confinement of Triple-Negative Breast Cancer

    Get PDF
    Combating triple-negative breast cancer (TNBC) is still a problem, despite the development of numerous drug delivery approaches. Mucin1 (MUC1), a glycoprotein linked to chemo-resistance and progressive malignancy, is unregulated in TNBC. GO-201, a MUC1 peptide inhibitor that impairs MUC1 activity, promotes necrotic cell death by binding to the MUC1-C unit. The current study deals with the synthesis and development of a novel nano-formulation (DM-PEG-PCL NPs) comprising of polyethylene glycol-polycaprolactone (PEG-PCL) polymer loaded with MUC1 inhibitor and an effective anticancer drug, doxorubicin (DOX). The DOX and MUC1 loaded nanoparticles were fully characterized, and their different physicochemical properties, viz. size, shape, surface charge, entrapment efficiencies, release behavior, etc., were determined. With IC(50) values of 5.8 and 2.4 nm on breast cancer cell lines, accordingly, and a combination index (CI) of < 1.0, DM-PEG-PCL NPs displayed enhanced toxicity towards breast cancer cells (MCF-7 and MDA-MB-231) than DOX-PEG-PCL and MUC1i-PEG-PCL nanoparticles. Fluorescence microscopy analysis revealed DOX localization in the nucleus and MUC1 inhibitor in the mitochondria. Further, DM-PEG-PCL NPs treated breast cancer cells showed increased mitochondrial damage with enhancement in caspase-3 expression and reduction in Bcl-2 expression.In vivo evaluation using Ehrlich Ascites Carcinoma bearing mice explicitly stated that DM-PEG-PCL NPs therapy minimized tumor growth relative to control treatment. Further, acute toxicity studies did not reveal any adverse effects on organs and their functions, as no mortalities were observed. The current research reports for the first time the synergistic approach of combination entrapment of a clinical chemotherapeutic (DOX) and an anticancer peptide (MUC1 inhibitor) encased in a diblock PEG-PCL copolymer. Incorporating both DOX and MUC1 inhibitors in PEG-PCL NPs in the designed nanoformulation has provided chances and insights for treating triple-negative breast tumors. Our controlled delivery technology is biodegradable, non-toxic, and anti-multidrug-resistant. In addition, this tailored smart nanoformulation has been particularly effective in the therapy of triple-negative breast cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10924-022-02654-4

    Inheritance of A1 System of Cytoplasmic-Nuclear Male Sterility in Pearl Millet [Pennisetum glaucum (L). R. Br.]

    Get PDF
    Inheritance of male sterility and fertility restoration of the A1 system of cytoplasmic- nuclear male sterility in pearl millet was investigated using 12 crosses among three diverse male sterile lines (A-lines) and four diverse restorers (R-lines). Individual plants from R- lines were used to make crosses on A-lines. The segregation pattern of male sterile (S) and male fertile (F) plants observed in F2 and BC1 in two seasons at ICRISAT, Patancheru was suggestive more likely of a single-gene control of male sterility and fertility restoration. However, a 3-gene model of male sterility/fertility restoration where dominant alleles at any two of the three duplicate complimentary loci will lead to male fertility could not be ruled out, nor could be ruled out a 2-gene control with duplicate interaction. There was indication of variability even within a highly inbred R-line for fertility restoration gene(s). Depending on the genetic constitution of the R-lines at these loci, even the 3-gene model can lead to single-gene segregation ratios as observed in most of the F2s and backcrosses, and 2-gene ratios as observed in a few F2s and backcrosses. The deviations from these expected ratios in some of the crosses influenced by modifiers and environmental conditions generally resulted from the excess of fertile plants in the rainy season or excess of sterile plants in the dry season, the more so in crosses involving an A-line which has been reported to be relatively more unstable for male sterility
    • …
    corecore