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Abstract: Three methods of sixth order convergence are tackled for approximating the solution of
an equation defined on the finitely dimensional Euclidean space. This convergence requires the
existence of derivatives of, at least, order seven. However, only derivatives of order one are involved
in such methods. Moreover, we have no estimates on the error distances, conclusions about the
uniqueness of the solution in any domain, and the convergence domain is not sufficiently large.
Hence, these methods have limited usage. This paper introduces a new technique on a general
Banach space setting based only the first derivative and Lipschitz type conditions that allow the
study of the convergence. In addition, we find usable error distances as well as uniqueness of the
solution. A comparison between the convergence balls of three methods, not possible to drive with
the previous approaches, is also given. The technique is possible to use with methods available in
literature improving, consequently, their applicability. Several numerical examples compare these
methods and illustrate the convergence criteria.
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1. Introduction

Let F : Ω ⊂ X→ Y be Fréchet differentiable operator, X, Y be two Banach spaces and Ω ⊂ X be
open, convex, and non-void. To solve F(x) = 0, we study the local convergence of the following three
step methods defined for σ = 0, 1, 2, . . . as

yσ = xσ −
2
3

F′(xσ)
−1F(xσ)

zσ = xσ −
1
2

[
I + 2F′(xσ)

(
3F′(yσ)− F′(xσ)

)−1]
F′(xσ)

−1F(xσ)

xσ+1 = zσ − 2
(

3F′(yσ)− F′(xσ)
−1
)

F(zσ),

(1)

yσ = xσ −
2
3

F′(xσ)
−1F(xσ)

zσ = xσ −
1
2

[
I + 2F′(xσ)

(
3F′(yσ)− F′(xσ)

)−1]
F′(xσ)

−1F(xσ)

xσ+1 = zσ −
1
4

[
I + 2F′(xσ)

(
3F′(yσ)− F′(xσ)

)−1]2
F′(xσ)

−1F(zσ),

(2)
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and
yσ = xσ − F′(xσ)

−1F(xσ)

zσ = yσ +
1
3

[
F′(xσ)

−1 + 2
(

F′(xσ)− 3F′(yσ)
)−1]

F(xσ)

xσ+1 = zσ +
1
3

[
4
(

F′(xσ)− 3F′(yσ)
)−1
− F′(xσ)

−1
]

F(zσ).

(3)

The application of F(x) = 0 is mentioned in the standard books [1–4]. The definition of the Fréchet
derivative can be found for example in [5]. These methods use two operators, two Fréchet derivative
evaluations, and two linear operator inversions. The sixth convergence order of methods was given in
Cordero et al. [6], Soleymani et al. [7], and Esmaeili and Ahmadi [8], respectively. The conclusions
were obtained for the special case when X = Y = Ri, using Taylor series with hypotheses up to the
seventh derivative even though it does not appear in the methods. Thus, these hypotheses restrict
the applicability of the methods. Let us consider a motivational example. We assume the following
function F on X = Y = R and D = [− 1

2 , 3
2 ] such as:

F(κ) =

{
κ3 ln κ2 + κ5 − κ4, κ 6= 0
0, κ = 0

, (4)

which leads to
F′(κ) = 3κ2 ln κ2 + 5κ4 − 4κ3 + 2κ2,

F′′(κ) = 6κ ln κ2 + 20κ3 − 12κ2 + 10κ,

F′′′(κ) = 6 ln κ2 + 60κ2 − 12κ + 22.

We note that F′′′(κ) is not bounded in D. Therefore, results requiring the existence of F′′(κ) or higher
cannot be applied for studying the convergence of Equations (1)–(3). Moreover, no computable
error bounds ‖xσ − x∗‖, where x∗ solves the equation F(x) = 0, or any information regarding the
uniqueness of the solution are provided using Lipschitz-type functions. Similar types of problems can
be found in [9–15]. Furthermore, the convergence criteria can not be compared, since they are based
on different hypotheses. We address all these problems by using only the first derivative. Moreover,
we rely on the computational order of convergence (COC) or approximated computational order
of convergence (ACOC) [16–18] to determine the c-order (Computational order of convergence) not
requiring derivatives of order higher than one. The new technique uses the same set of conditions for
the three methods. Furthermore, it can also be used to extend the applicability of other methods along
the same lines.

Local convergence results are important because they demonstrate the degree of difficulty in
choosing initial points within the so-called convergence ball that is in the region from which we can
pick the initial points ensuring the convergence of the iterative method. In general, the convergence ball
is small and, furthermore, decreases when the convergence order of the method increases. Therefore,
it is very important to extend the radius of the convergence ball, but without imposing additional
hypotheses that may limit the applicability of the method.

This is the main motivation for this paper that accomplishes this objective under weaker
hypotheses than previous methods. It must be noted that the number of required iterations to
achieve a certain error tolerance is a distinct issue. This information is also provided, as well as the
uniqueness of the solution that are not clearly addressed in previous works. In fact, when applying the
previous methods, we do not have sufficient information for establishing an educated guess about the
convergence ball from where the initial choice point must be picked. Therefore, with those methods,
the initial point may, or may not, result in convergence toward the results.

The rest of the paper includes the following sections. Section 2 analyzes the local convergence of
the proposed technique. Section 3 discusses several numerical experiments. Section 4 presents the
concluding results.
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2. Local Convergence

Let us introduce some real functions and parameters to be used later as follows in the local
convergence analysis.

Suppose that equation
w0(ζ) = 1 (5)

has a minimal positive solution ρ0, where w0 : I → I is continuous, increasing, with w0(0) = 0,
and I = [0, ∞). Consider functions w : I0 → I, v : I0 → I to be continuous, increasing, with w(0) = 0,
and I0 = [0, ρ0).

Suppose that
v(0)

3
− 1 < 0. (6)

Define functions g1 and h1 on I0 as follows:

g1(ζ) =

∫ 1
0 w
(
(1− θ)ζ

)
dθ + 1

3

∫ 1
0 v(θζ)dθ

1− w0(ζ)
,

h1(ζ) = g1(ζ)− 1.

By (6) and these definitions, we have h1(0) =
v(0)

3 − 1 < 0 and h1(ζ)→ ∞ as t→ ρ−0 . Denote by
r1 the minimal solution of equation h1(ζ) = 0 in the interval (0, ρ0) with assured existence by the
intermediate value theorem.

Suppose that the equation
p(ζ) = 1 (7)

has a minimal positive solution ρp, where

p(ζ) =
1
2

[
3w0

(
g1(ζ)ζ

)
+ w0(ζ)

]
.

Set I1 = [0, ρ1), where ρ1 := min{ρ0, ρp}. Define functions g2 and h2 on the interval I1 by

g2(ζ) =

∫ 1
0 w
(
(1− θ)ζ

)
dθ

1− w0(ζ)
+

3
4

[
w0

(
g1(ζ)ζ

)
+ w0(ζ)

] ∫ 1
0 v(θζ)dθ(

1− p(ζ)
)(

1− w0(ζ)
) ,

h2(ζ) = g2(ζ)− 1.

We get again h2(0) = −1 and h2(ζ) → ∞ as ζ → ρ−1 . Denote by r2 the smallest solution of
equation h2(ζ) = 0 in the interval (0, ρ1).

Suppose that equation

w0

(
g2(ζ)ζ

)
= 1 (8)

has a minimal positive solution ρ2.
Set I2 := [0, ρ), where ρ = min{ρ1, ρ2}. Next, define functions g3 and h3 on the interval I2 by

g3(ζ) =

[ ∫ 1
0 w
(
(1− θ)g2(ζ)ζ

)
dθ

1− w0

(
g2(ζ)ζ

) +

[
3w0

(
g1(ζ)ζ

)
+ 2w0

(
g2(ζ)ζ

)
+ w0(ζ)

] ∫ 1
0 v
(

θg2(ζ)ζ
)

dθ

2
(

1− w0

(
g2(ζ)ζ

))(
1− p(ζ)

) ]
g2(ζ),

h3(ζ) = g3(ζ)− 1.
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We obtain h3(0) = −1 and h3(ζ)→ ∞ as ζ → ρ−. Denote by r3 the minimal solution of equation
h3(ζ) = 0 in the interval (0, ρ). Define a radius of convergence r by

r = min{rj}, j = 1, 2, 3. (9)

It follows that, for all ζ ∈ I3 := [0, r),

0 ≤ w0(ζ) < 1, (10)

0 ≤ w0

(
g2(ζ)ζ

)
< 1, (11)

0 ≤ p(ζ) < 1, (12)

0 ≤ gj(ζ) < 1. (13)

The hypotheses (Ai, i = 1, 2, . . . 5) used in the local convergence analysis of all three methods are:

(A1) F : Ω ⊂ X → Y, is Fréchet differentiable and there exists x∗ ∈ Ω with F(x∗) = 0 and
F′(x∗)−1`(Y,X).

(A2) There exists function w0 : I → I continuous, increasing with w0(0) = 0 such that for each x ∈ Ω∥∥∥F′(x∗)−1
(

F′(x)− F′(x∗)
)∥∥∥ ≤ w0(‖x− x∗‖).

Set Ω0 = Ω ∩U(x∗, ρ0).
(A3) There exist functions w : I0 → I and v :: I0 → I continuous and increasing with w(0) = 0, such

that for each x, y ∈ Ω0∥∥∥F′(x∗)−1
(

F′(x)− F′(y)
)∥∥∥ ≤ w(‖x− x∗‖)‖x− y‖

and ∥∥∥F′(x∗)−1F′(x)
∥∥∥ ≤ v(‖x− x∗‖).

(A4) The ball Ū(x∗, r) ⊂ Ω, ρ0, ρp, and ρ2 are defined in previous expressions.
(A5) There exists r∗ ≥ r such that ∫ 1

0
w0(θr∗)dθ < 1.

Set Ω1 = Ω ∩U∗(x∗, r∗).

Next, we provide the local convergence analysis of method (1) using the hypotheses (A) and the
aforementioned symbols.

Theorem 1. Suppose that the hypotheses (A) hold. Then, starting from any x0 ∈ U(x∗, r) − {x∗},
the sequence {xσ} generated by method (1) is well defined, which remains in U(x∗, r) for each σ = 0, 1, 2, 3, . . .
and lim

σ→∞
xσ = x∗. Moreover, the following error estimates are available:

‖yσ − x∗‖ ≤ g1(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r, (14)

‖zσ − x∗‖ ≤ g2(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖, (15)

‖xσ+1 − x∗‖ ≤ g3(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖, (16)

where the functions gj are given previously and the radius r is defined by (9). Furthermore, x∗ is the only
solution of equation F(x) = 0 in the set Ω1 given below (A5).
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Proof. Inequations (14)–(16) are shown by using mathematical induction. Using (9) and (10), A1,
and A2, we have for all x ∈ U(x∗, r)∥∥∥F′(x)−1

(
F′(x)− F′(x∗)

)∥∥∥ ≤ w0(‖x− x∗‖) ≤ w0(r) < 1. (17)

By the Banach lemma on invertible operators [5,19–21], expression (17), F′(x)−1 ∈ `(Y,X), and∥∥∥F′(x)−1F′(x)
∥∥∥ ≤ 1

w0(‖x− x∗‖)
. (18)

Then, y0 is well defined by the first substep of method (1). By A1 and A3, we can write

F(x) = F(x)− F(x∗) =
∫ 1

0
F′
(

x∗ + θ(x0 − x∗)
)

dθ(x0 − x∗)

and so, by the second hypothesis in (A3), we have∥∥∥F′(x)−1F′(x)
∥∥∥ =

∥∥∥F′(x∗)−1
∫ 1

0
F′
(

x∗ + θ(x0 − x∗)
)

dθ(x0 − x∗)
∥∥∥∫ 1

0
v
(

θ‖x0 − x∗‖
)

dθ‖x0 − x∗‖.
(19)

In view of method (1) (for σ = 0), expressions (9) and (13) (for j = 1), hypothesis (A3),
expression (18) (for x = x0) and (19), we obtain

‖y0 − x∗‖ =
∥∥∥∥(x0 − x∗ − F′(x0)

−1F(x0)
)
+

1
3

F′(x0)
−1F(x0)

∥∥∥∥
≤
∥∥∥(x0 − x∗ − F′(x0)

−1F(x0)
)∥∥∥+ 1

3

∥∥∥F′(x0)
−1F(x0)

∥∥∥
≤
∥∥∥F′(x0)

−1F(x∗)
∥∥∥ ∥∥∥∥∫ 1

0
F′(x∗)−1

[
F′
(

x∗ + θ(x0 − x∗)
)
− F′(x0)

]
dθ(x0 − x∗)

∥∥∥∥
+

1
3

∥∥∥F′(x0)
−1F(x∗)

∥∥∥ ∥∥∥F′(x0)
−1F(x0)

∥∥∥
≤

[ ∫ 1
0 w
(
(1− θ)‖x0 − x∗‖

)
dθ + 1

3

∫ 1
0 v
(

θ‖x0 − x∗‖
)

dθ
]
‖x0 − x∗‖

w0(‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(20)

so that y0 ∈ U(x∗, r) and (14) hold for σ = 0.
By expressions (9), (11) and (20), we have∥∥∥∥∥(2F′(x∗)

)−1[
3F′(y0)− F′(x0)− 3F′(x∗) + F′(x∗)

]∥∥∥∥∥
≤ 1

2

[
3
∥∥∥F′(x∗)−1

(
F′(y0)− F′(x∗)

)∥∥∥+ ∥∥∥F′(x∗)−1
(

F′(x0)− F′(x∗)
∥∥∥]

≤ 1
2

[
3w0(‖y0 − x∗‖) + w0(‖x0 − x∗‖)

]
≤ p(‖x0 − x∗‖) ≤ p(r) < 1,

so that (
3F′(y0)− F′(x0)

)−1
∈ `(Y,X),
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and ∥∥∥(3F′(y0)− F′(x0)
)−1

F′(x∗)‖ ≤
1

2(1− p(‖x0 − x∗‖))
.

Then, z0 is well defined by the second substep of method (1) for σ = 0. Next, by the second
substep of method (1) for σ = 0, we can write

z0 − x∗ =
(

x0 − x∗ − F′(x0)
−1F(x0)

)
+ F′(x0)

−1F(x0)−
1
2

F′(x0)
−1F(x0)

− F′(x0)
(

3F′(y0)− F′(x0)
)−1

F′(x0)
−1F(x0)

=
(

x0 − x∗ − F′(x0)
−1F(x0)

)
+
[ 1

2
I − F′(x0)

(
3F′(y0)− F′(x0)

)−1]
F′(x0)

−1F(x0)

=
(

x0 − x∗ − F′(x0)
−1F(x0)

)
+

[
3F′(y0)− F′(x0)

2
− F′(x0)

] (
3F′(y0)− F′(x0)

)−1
F′(x0)

−1F(x0)

=
(

x0 − x∗ − F′(x0)
−1F(x0)

)
+

3
2

(
F′(y0)− F′(x0)

)(
3F′(y0)− F′(x0)

)−1
F′(x0)

−1F(x0).

(21)

Hence, by expressions (9), (13) (for j = 2) and (19)–(21), we obtain

‖z0 − x∗‖ =
[∫ 1

0 w
(
(1− θ)‖x0 − x∗‖

)
dθ

1− w0(‖x0 − x∗‖)

+
3
(

w0(‖y0 − x∗‖) + w0(‖x0 − x∗‖)
) ∫ 1

0 v
(

θ‖x0 − x∗‖
)

dθ

4
(

1− w0(‖x0 − x∗‖)
)(

1− p(‖x0 − x∗‖)
) ]

‖x0 − x∗‖

= g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r.

(22)

Thus, z0 ∈ U(x∗, r) and expression (15) hold for σ = 0.

In view of method (1) for σ = 0, x1 is well defined
(

F′(z0)
−1 ∈ `(Y,X) by (18) for x = z0

)
. Then,

we can write

x1 − x∗ =
(

z0 − x∗ − F′(z0)
−1F(z0)

)
+
[

F′(z0)
−1 − 2

(
3F′(y0)− F′(x0)

)−1]
F(z0),

which further yields

‖x1 − x∗‖ =
[ ∫ 1

0 w
(

θ‖z0 − x∗‖
)

dθ

1− w0(‖z0 − x∗‖)

+

[
2
(

w0(‖y0 − x∗‖) + w0(‖z0 − x∗‖)
)
+ w0(‖y0 − x∗‖) + w0(‖x0 − x∗‖)

] ∫ 1
0 v
(

θ‖z0 − x∗‖
)

dθ

2
(

1− w0(‖z0 − x∗‖)
)(

1− p(‖x0 − x∗‖)
) ]

‖z0 − x∗‖

= g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(23)

so that x1 ∈ U(x∗, r) and expression (16) hold for σ = 0. Thus far, we have shown that
estimates (14)–(16) hold for σ = 0. If we simply replace x0, y0, z0 and x1 by xm, ym, zm and xm+1,
(m = 1, 2, 3, ..., σ− 1), respectively, in the preceding computations, then we obtain

‖ym+1 − x∗‖ ≤ g1(‖xm+1 − x∗‖)‖xm+1 − x∗‖ ≤ ‖xm+1 − x∗‖ < r

‖zm+1 − x∗‖ ≤ g2(‖xm+1 − x∗‖)‖xm+1 − x∗‖ ≤ ‖xm+1 − x∗‖ < r

and

‖xm+2 − x∗‖ ≤ g3(‖xm+1 − x∗‖)‖xm+1 − x∗‖ < r.
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By the above estimations

‖xm+1 − x∗‖ ≤ c‖xm − x∗‖ < r, c = g3(‖x0 − x∗‖) ∈ [0, 1),

we deduce that lim
m→∞

xm = x∗, with xm+1 ∈ U(x∗, r). Consider y∗ ∈ Ω1 with F(y∗) = 0 and set

S =
∫ 1

0
F′
(

x∗ + θ(y∗ − x∗)
)

dθ.

By (A2) and (A5), we obtain∥∥∥F′(x∗)−1
(

S− F′(x∗)
)∥∥∥ ≤ ∫ 1

0
w0(θ‖y∗ − x∗‖)dθ

≤
∫ 1

0
w0(θr∗)dθ < 1,

so that S−1 ∈ `(Y,X). Then, x∗ = y∗ follows from the identity 0 = F(y∗)− F(x∗) = S(y∗ − x∗).

Secondly, for the method (2), the conclusion of Theorem 1 holds, but r is defined by

r(2) = min{r1, r2, r(2)3 }, (24)

so that r(2)3 is the minimal positive solution of equation h2
3(ζ) = 0, which h2

3(ζ) = g2
3(ζ)− 1 and

g(2)3 (ζ) =

1 +
1
4

q(ζ)


∫ 1

0 v
(

θg2(ζ)ζ
)

dθ

1− w0(ζ)


 g2(ζ),

where

q(ζ) =
3w0

(
g1(ζ)ζ

)
+ w0(ζ) + 4

2
(

1− p(ζ)
) .

Notice also that g1, h1, g2, h2, r1, and r2 are the same as in Theorem 1. Functions g(2)3 , h(2)3 , and q
appear due to the estimates∥∥∥I + 2F′(xσ)

(
3F′(yσ)− F′(xσ)

)−1∥∥∥
=
∥∥∥[3(F′(yσ)− F′(xσ)

)
+ 2F′(xσ)

][
3F′(yσ)− F′(xσ)

]−1∥∥∥
=

∥∥∥∥∥[3(F′(yσ)− F′(xσ)
)
+
(

F′(xσ)− F′(x∗)
)
+ 4F′(x∗)

][
3F′(yσ)− F′(xσ)

]−1
∥∥∥∥∥

≤ 3w0(‖yσ − x∗‖+ w0(‖xσ − x∗‖) + 4

2
(

1− p(‖xσ − x∗‖)
) ≤ q(‖xσ − x∗‖)

and
‖xσ+1 − x∗‖ ≤ ‖zσ − x∗‖+

1
4

∥∥∥[I + 2F′(xσ)
(

3F′(yσ)− F′(xσ)
)−1]

F′(xσ)
−1F(zσ)

∥∥∥
≤

1 +
1
4

q(‖xσ − x∗‖)

∫ 1
0 v
(

θ‖zσ − x∗‖
)

dθ

1− w0(‖xσ − x∗‖)

 ‖zσ − x∗‖

≤ g(2)3 (‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r(2).

Hence, we arrive at the following theorem.
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Theorem 2. Suppose that the conditions (A) hold, but with r2 and g(2)3 replaced by r and g3, respectively.
Then, the same conclusions hold for method (2), but with (16) replaced by

‖xσ+1 − x∗‖ ≤ g(2)3 (‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖. (25)

Finally, for the local convergence of method (3), we introduce the functions

g(3)2 (ζ) = g1(ζ) +

(
w0(ζ) + w0

(
g1(ζ)ζ

)) ∫ 1
0 v(θζ)dθ

2
(

2− w0(ζ)
)(

1− p(ζ)
) ,

h(3)2 (ζ) = g(3)2 (ζ)− 1,

g(3)3 (ζ) =

1 +
3
(

w0(ζ) + w0

(
g1(ζ)ζ

)) ∫ 1
0 v
(

θg(3)2 (ζ)ζ
)

dθ

2
(

2− w0(ζ)
)(

1− p(ζ)
)

 g(3)2 (ζ),

h(3)3 (ζ) = g(3)3 (ζ)− 1.

Let us denote by r(3)2 and r(3)3 the minimal positive solutions of equations h(3)2 (ζ) = 0 and

h(3)3 (ζ) = 0, respectively. Set

r(3) = min{r1, r(3)2 , r(3)3 }. (26)

These functions are defined due to the estimates

‖zσ − x∗‖ =
∥∥∥∥∥yσ − x∗ +

1
3

F′(xσ)
−1
[(

F′(xσ)− 3F′(yσ) + 2F′(xσ)
)(

F′(xσ)− 3F′(yσ)
)−1

F(xσ)
]∥∥∥∥∥

=

∥∥∥∥∥(yσ − x∗) + F′(xσ)
−1
(

F′(xσ)− F′(yσ)
)(

F′(xσ)− 3F′(yσ)
)−1

F(xσ)

∥∥∥∥∥
≤
[

g1(‖xσ − x∗‖) +

(
w0(‖xσ − x∗‖) + w0(‖yσ − x∗‖)

) ∫ 1
0 v(θ‖xσ − x∗‖)dθ

2
(

1− w0(‖xσ − x∗‖)
)(

1− p(‖xσ − x∗‖)
) ]

‖xσ − x∗‖

≤ g(3)2 (‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖

and

‖xσ+1 − x∗‖ =
∥∥∥∥∥zσ − x∗ +

(
F′(xσ)− 3F′(yσ)

)−1[
4F′(xσ)−

(
F′(xσ)− 3F′(yσ)

)]
F′(xσ)

−1F(zσ)

∥∥∥∥∥
=

∥∥∥∥∥(zσ − x∗) + 3
(

F′(xσ)− 3F′(yσ)
)−1(

F′(xσ)− F′(yσ)
)

F′(xσ)
−1F(zσ)

∥∥∥∥∥
≤
[

1 +
3
(

w0(‖xσ − x∗‖) + w0(‖yσ − x∗‖)
) ∫ 1

0 v(θ‖zσ − x∗‖)dθ

2
(

1− w0(‖xσ − x∗‖)
)(

1− p(‖xσ − x∗‖)
) ]

‖xσ − x∗‖

≤ g(3)3 (‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖.

Theorem 3. Let us consider hypotheses (A), but with g(3)2 , g(3)3 , and r3 replacing by g2, g3, and r, respectively.
Then, the conclusions of Theorem 1 hold for method (3), but with (15) and (16) replaced by

‖zσ − x∗‖ = g(3)2 (‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ (27)
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and
‖xσ+1 − x∗‖ = g(3)3 (‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖, (28)

respectively.

3. Numerical Examples

The theoretical results developed in the previous sections are illustrated numerically in this
section. We denote the methods (1)–(3) by (CM), (SM), and (EA), respectively. We consider two real
life problems and two standard nonlinear problems that are illustrated in Examples 1–4. The results
are listed in Tables 1, 2, 3 (values of ψi and ϕi (in radians) for Example 3), 4, and 5. Additionally, we
obtain the COC approximated by means of

ξ =
ln ‖xσ+1−x∗‖

|xσ−x∗‖

ln ‖xσ−x∗‖
‖xσ−1−x∗‖

, for σ = 1, 2, . . . (29)

or ACOC [18] by:

ξ∗ =
ln ‖xσ+1−xσ‖
‖xσ−xσ−1‖

ln ‖xσ−xσ−1‖
‖xσ−1−xσ−2‖

, for σ = 2, 3, . . . (30)

We adopt ε = 10−100 as the error tolerance and the terminating criteria to solve nonlinear system
or scalar equations are: (i) ‖xσ+1 − xσ‖ < ε, and (ii) ‖F(xσ)‖ < ε.

The computations are performed with the package Mathematica 9 with multiple precision arithmetics.

Example 1. Following the example presented in the Introduction, for x∗ = 1, we can set

w0(t) = w(t) = 96.662907t and v(t) = 2.

In Table 1, we present radii for example (1).

Table 1. Radii for Example (1).

Cases r1 r2 r3 r(2)
3 r(3)

2 r(3)
3 r r(2) r(3) x0 σ ξ

CM 0.0022989 0.0017993 0.0015625 - - - 0.0015625 - - 1.001 3 6.0000
SM 0.0022989 0.0017993 - 0.001022 - - - 0.001022- 1.0009 3 6.0000
EA 0.0022989 - - - 0.0013240 0.00081403 - - 0.00081403 1.0008 3 6.0000

(On the basis of obtained results, we conclude that method CM has a larger radius of convergence.)

Example 2. Let X = Y = R3 and Ω = S̄(0, 1). Assume F on Ω with v = (x, y, z)T as

F(u) = F(u1, u2, u3) =

(
eu1 − 1,

e− 1
2

u2
2 + u2, u3

)T
, (31)

where u = (u1, u2, u3)
T . Define the Fréchet-derivative as

F′(u) =

eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1

 .

Then, for x∗ = (0, 0, 0)T and F′(x∗) = F′(x∗)−1 = diag{1, 1, 1}, we have

w0(t) = (e− 1)t, w(t) = e
1

e−1 t and v(t) = e
1

e−1 .
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We obtain the convergence radii depicted in Table 2.

Table 2. Radii for Example 2.

Cases r1 r2 r3 r(2)
3 r(3)

2 r(3)
3 r r(2) r(3) x0 σ ξ

CM 0.15441 0.11011 0.096467 - - - 0.096467 - - (0.094,0.094,0.094) 3 6.0000

SM 0.15441 0.11011 - 0.065471 - - - 0.065471 - (0.063,0.063,0.063) 3 6.0000

EA 0.15441 - - - 0.092584 0.059581 - - 0.059581 (0.054,0.054,0.054) 3 6.0000

(Among the three methods, the larger radius of convergence belong to the method CM.)

Example 3. The kinematic synthesis problem for steering [22,23] is given as

[Ei (x2 sin (ψi)− x3)− Fi (x2 sin (ϕi)− x3)]
2 + [Fi (x2 cos (ϕi) + 1)− Fi (x2 cos (ψi)− 1)]2

− [x1 (x2 sin (ψi)− x3) (x2 cos (ϕi) + 1)− x1 (x2 cos (ψi)− x3) (x2 sin (ϕi)− x3)]
2 = 0, for i = 1, 2, 3,

where

Ei = −x3x2 (sin (ϕi)− sin (ϕ0))− x1 (x2 sin (ϕi)− x3) + x2 (cos (ϕi)− cos (ϕ0)) , i = 1, 2, 3

and

Fi = −x3x2 sin (ψi) + (−x2) cos (ψi) + (x3 − x1) x2 sin (ψ0) + x2 cos (ψ0) + x1x3, i = 1, 2, 3.

In Table 3, we present the values of ψi and ϕi (in radians).

Table 3. Values of ψi and ϕi (in radians) for Example 3.

i ψi ϕi

0 1.3954170041747090114 1.7461756494150842271
1 1.7444828545735749268 2.0364691127919609051
2 2.0656234369405315689 2.2390977868265978920
3 2.4600678478912500533 2.4600678409809344550

The approximated solution is for Ω = S̄(x∗, 1)

x∗ = (0.9051567 . . . , 0.6977417 . . . , 0.6508335 . . . )T .

Then, we get
w0(t) = w(t) = 3t and v(t) = 2.

We provide the radii of convergence for Example 3 in Table 4.

Table 4. Radii for Example 3.

Cases r1 r2 r3 r(2)
3 r(3)

2 r(3)
3 r r(2) r(3) x0 σ ξ

CM 0.074074 0.057977 0.050345 - - - 0.050345 - - (0.945,0.737,0.690) 3 6.1328

SM 0.074074 0.057977 - 0.032936 - - - 0.032936 - (0.933,0.726,0.678) 3 6.1377

EA 0.074074 - - - 0.042662 0.026229 - - 0.026229 (0.929,0.722,0.674) 3 4.8142
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Example 4. Let us consider that X = Y = C[0, 1], Ω = S̄(0, 1) and introduce the space of maps continuous
in [0, 1] having the max norm. We consider the following function ϕ on A:

Ψ(φ)(x) = Ψ(x)−
∫ 1

0
xτφ(τ)3dτ. (32)

which further yields:

Ψ′
(
φ(µ)

)
(x) = µ(x)− 3

∫ 1

0
xτφ(τ)2µ(τ)dτ, for µ ∈ Ω.

We have x∗ = 0 and

w0(t) =
3
2

, w(t) = 3t and v(t) = 2.

We list the radii of convergence for example (4) in Table 5.

Table 5. Radii of convergence for Example 4.

Cases r1 r2 r3 r(2)
3 r(3)

2 r(3)
3 r r(2) r(3)

CM 0.111111 0.105542 0.0922709 - - - 0.0922709 - -
SM 0.111111 0.105542 - 0.0594758 - - - 0.0594758
EA 0.111111 - - - 0.0718454 0.0465723 - - 0.0465723

(CM has a larger radius of convergence as compared to other two methods.)

4. Conclusions

We have introduced a new technique capable of proving convergence relying on hypotheses
only on the first derivative (used in these methods) in contrast to earlier studies using hypotheses
up to the seven derivatives and the Taylor series. Moreover, the new technique provides usable
error analysis for operators valued on Banach space. In order to recover the convergence order, but,
without using Taylor series, we rely on the COC and ACOC that require only the first order derivative.
Four numerical examples compare the radii of the convergence balls for these methods, showing that
our results can be used in cases not possible before. The technique can also be used to extend the usage
of other iterative methods using inverses in an analogous procedure.
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