165 research outputs found

    The Feedback Control Of Cholesterol Biosynthesis

    Get PDF

    The Accumulation of Tissue Cholesterol and Its Relationship to Bile Acid and Sterol Turnover

    Get PDF
    Normal and hypophysectomized rats were divided into equal homogeneous groups to determine the effect of cholestyramine, corn oil and cholesterol on the excretion of fecal bile acids and sterols. Bile acid turnover rates, pool sizes, and spectrums were studied and compared

    The Effect of Psyllium Hydrocolloid and Cholestyramine on Hepatic Bile Lipid Composition in Man

    Get PDF
    The effects of a mucoid - psyllium hydrocolloid - and an anion exchange polymercholestryamine - on the total cholesterol, total phospholipid, total bile salt, cholate, chenodeoxycholate, and deoxycholate concentrations of hepatic bile were determined in six post-cholecystectomy patients. Bile was obtained by drainage through an indwelling T-tube, which was clamped except during bile collection. Psyllium hydrocolloid treatment (12 gm/day) for 6 to 29 days had little or no effect on the cholesterol or phospholipid concentration of hepatic bile, but increased the total bile salt pool by gradually increasing the concentration of deoxycholate. Cholestyramine treatment (12 gm/day) for 8 to 12 days had no significant effect on cholesterol, phospholipid or total bile salt concentrations. There was a significant increase in the tri- to di-hydroxy bile salt ratio due to decreases in chenodeoxycholate and deoxycholate concentrations. The ratio of taurine to glycine conjugates decreased because of reductions in concentrations of taurine conjugates and compensating increases in glycine conjugates. The influence of these changes on bile micelle stability and cholesterol solubility is discussed. It is concluded that the changes effected by psyllium hydrocolloid may result in more stable bile micelles and greater cholesterol solubility. No definite conclusions can be reached with respect to cholestyramine\u27s effects

    Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators

    Get PDF
    A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu[superscript 230], located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.Glenn Foundation for Medical ResearchEllison Medical FoundationJuvenile Diabetes Research Foundation InternationalUnited Mitochondrial Disease FoundationNational Institutes of Health (U.S.)National Institute of Allergy and Infectious Diseases (U.S.

    Resveratrol Increases Glucose Induced GLP-1 Secretion in Mice: A Mechanism which Contributes to the Glycemic Control

    Get PDF
    Resveratrol (RSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the mechanisms involved in the glucoregulatory action of RSV in high-fat diet (HFD)-fed diabetic wild type mice. Administration of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both Glucagon-like peptid-1 (GLP-1) and insulin, and intestinal content of active GLP-1. This was associated with increased levels of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Glp1r) as neither glucose nor insulin levels were modulated in Glp1r-/- mice. Conversely, levels of active GLP-1 and control of glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin was co-administered with RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo

    Resveratrol Inhibits Protein Translation in Hepatic Cells

    Get PDF
    Resveratrol is a plant-derived polyphenol that extends lifespan and healthspan in model organism. Despite extensive investigation, the biological processes mediating resveratrol's effects have yet to be elucidated. Because repression of translation shares many of resveratrol's beneficial effects, we hypothesized that resveratrol was a modulator of protein synthesis. We studied the effect of the drug on the H4-II-E rat hepatoma cell line. Initial studies showed that resveratrol inhibited global protein synthesis. Given the role of the mammalian Target of Rapamycin (mTOR) in regulating protein synthesis, we examined the effect of resveratrol on mTOR signaling. Resveratrol inhibited mTOR self-phosphorylation and the phosphorylation of mTOR targets S6K1 and eIF4E-BP1. It attenuated the formation of the translation initiation complex eIF4F and increased the phosphorylation of eIF2α. The latter event, also a mechanism for translation inhibition, was not recapitulated by mTOR inhibitors. The effects on mTOR signaling were independent of effects on AMP-activated kinase or AKT. We conclude that resveratrol is an inhibitor of global protein synthesis, and that this effect is mediated through modulation of mTOR-dependent and independent signaling

    The Role of Presenilin and its Interacting Proteins in the Biogenesis of Alzheimer’s Beta Amyloid

    Get PDF
    The biogenesis and accumulation of the beta amyloid protein (Aβ) is a key event in the cascade of oxidative and inflammatory processes that characterises Alzheimer’s disease. The presenilins and its interacting proteins play a pivotal role in the generation of Aβ from the amyloid precursor protein (APP). In particular, three proteins (nicastrin, aph-1 and pen-2) interact with presenilins to form a large multi-subunit enzymatic complex (γ-secretase) that cleaves APP to generate Aβ. Reconstitution studies in yeast and insect cells have provided strong evidence that these four proteins are the major components of the γ-secretase enzyme. Current research is directed at elucidating the roles that each of these protein play in the function of this enzyme. In addition, a number of presenilin interacting proteins that are not components of γ-secretase play important roles in modulating Aβ production. This review will discuss the components of the γ-secretase complex and the role of presenilin interacting proteins on γ-secretase activity

    Gender- and Age-Dependent γ-Secretase Activity in Mouse Brain and Its Implication in Sporadic Alzheimer Disease

    Get PDF
    Alzheimer disease (AD) is an age-related disorder. Aging and female gender are two important risk factors associated with sporadic AD. However, the mechanism by which aging and gender contribute to the pathogenesis of sporadic AD is unclear. It is well known that genetic mutations in γ-secretase result in rare forms of early onset AD due to the aberrant production of Aβ42 peptides, which are the major constituents of senile plaques. However, the effect of age and gender on γ-secretase has not been fully investigated. Here, using normal wild-type mice, we show mouse brain γ-secretase exhibits gender- and age-dependent activity. Both male and female mice exhibit increased Aβ42∶Aβ40 ratios in aged brain, which mimics the effect of familial mutations of Presenilin-1, Presenlin-2, and the amyloid precursor protein on Aβ production. Additionally, female mice exhibit much higher γ-secretase activity in aged brain compared to male mice. Furthermore, both male and female mice exhibit a steady decline in Notch1 γ-secretase activity with aging. Using a small molecule affinity probe we demonstrate that male mice have less active γ-secretase complexes than female mice, which may account for the gender-associated differences in activity in aged brain. These findings demonstrate that aging can affect γ-secretase activity and specificity, suggesting a role for γ-secretase in sporadic AD. Furthermore, the increased APP γ-secretase activity seen in aged females may contribute to the increased incidence of sporadic AD in women and the aggressive Aβ plaque pathology seen in female mouse models of AD. In addition, deceased Notch γ-secretase activity may also contribute to neurodegeneration. Therefore, this study implicates altered γ-secretase activity and specificity as a possible mechanism of sporadic AD during aging

    The structure and function of Alzheimer's gamma secretase enzyme complex

    Get PDF
    The production and accumulation of the beta amyloid protein (Aβ) is a key event in the cascade of oxidative and inflammatory processes that characterizes Alzheimer’s disease (AD). A multi-subunit enzyme complex, referred to as gamma (γ) secretase, plays a pivotal role in the generation of Aβ from its parent molecule, the amyloid precursor protein (APP). Four core components (presenilin, nicastrin, aph-1, and pen-2) interact in a high-molecular-weight complex to perform intramembrane proteolysis on a number of membrane-bound proteins, including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for their therapeutic benefit in AD. However, although these agents reduce Aβ levels, the majority have been shown to have severe side effects in pre-clinical animal studies, most likely due to the enzymes role in processing other proteins involved in normal cellular function. Current research is directed at understanding this enzyme and, in particular, at elucidating the roles that each of the core proteins plays in its function. In addition, a number of interacting proteins that are not components of γ-secretase also appear to play important roles in modulating enzyme activity. This review will discuss the structural and functional complexity of the γ-secretase enzyme and the effects of inhibiting its activity

    Activation of Sirt1 by Resveratrol Inhibits TNF-α Induced Inflammation in Fibroblasts

    Get PDF
    Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1β), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-α) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases
    corecore