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ABSTRACT 

The production and accumulation of the beta amyloid protein (Aβ) is a key event in the 

cascade of oxidative and inflammatory processes that characterises Alzheimer’s disease. A 

multi-subunit enzyme complex, referred to as gamma secretase, plays a pivotal role in the 

generation of Aβ from its parent molecule, the amyloid precursor protein (APP). Four core 

components (presenilin, nicastrin aph-1 and pen-2) interact in a high molecular weight 

complex to perform intramembrane proteolysis on a number of membrane bound proteins, 

including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for 

their therapeutic benefit in AD. However, though these agents reduce Aβ levels, the majority 

have been shown to have severe side-effects in pre-clinical animal studies, most likely due to 

its role at processing other proteins involved in normal cellular function. Current research is 

directed at a greater understanding of this enzyme in particular elucidating the roles that each 

of the core proteins play in its function. In addition, a number of interacting proteins that are 

not components of γ-secretase also appear to play important roles in modulating enzyme 

activity. This review will discuss the structural and functional complexity of the gamma 

secretase enzyme and the effects of inhibiting its activity. 

Keywords: Alzheimer’s disease, amyloid precursor protein, Anterior pharynx defective 

homolog 1, beta amyloid, gamma secretase, Notch receptor, presenilins, nicastrin, , presenilin 

enhnacer-2, Regulated intramembrane proteolysis 
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domain; NICD, Notch intra cellular domain; NECD, Notch extracellular domain; CICD, 
Cadheren intracellular domain; RIP, Regulated intramembrane proteolysis; LRP, Lipo 
protein receptor related protein; SREBP, Sterol regulatory element binding protein; IRE, 
Interferon response element; ATF, Activated transcription factor; CTF, C-terminal fragment; 
TMD, Transmembrane domain; NTF, N-terminal fragment; SPP, Signal peptide peptidase; 
NSAIDs, Non-steroidal anti-inflammatory drugs; NMDA, N-methyl D-Aspartate; GSI, 
Gamma secretase inhibitors; GSM, Gamma secretase modulators; LDL, Low density 
lipoprotein; VLDL, Very low density lipoprotein; IGF – Insulin like growth factor 
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INTRODUCTION 

Alzheimer’s disease (AD) is a complex, progressive neurodegenerative disorder that is 

neuropathologically characterised by extensive neuronal loss and the presence of 

neurofibrillary tangles and senile plaques. While the majority of AD cases are sporadic, ~5% 

of AD cases are familial (FAD) with mutations in three genes, amyloid precursor protein, 

presenilin 1 (PS1) and presenilin 2 (PS2) accounting for the majority of cases. A major 

feature of both sporadic and familial forms of AD, is the accumulation and deposition of a 

small peptide referred to as beta amyloid (Aβ) within brain tissue of AD sufferers. The 

mechanisms that underlie the disease processes are poorly understood. However, the 

accumulation of Aβ is thought to play a pivotal role in neuronal loss or dysfunction through a 

cascade of events that include the generation of free radicals, mitochondrial oxidative damage 

and inflammatory processes (reviewed in Refs. 1,2). One of the primary events that results in 

the abnormal accumulation of Aβ is thought to be the dysregulated proteolytic processing of 

its parent molecule, the amyloid precursor protein (APP).  

The APP molecule is a transmembrane glycoprotein that is proteolytically processed 

by two competing pathways, the non-amyloidogenic and amyloidogenic (Aβ forming) 

pathways (Figure 1). How these pathways are regulated remains unclear. However, there are 

many factors including diet, hormonal status, and genetic mutations that influence the 

processing of APP to generate Aβ  (reviewed in Refs. 3,4). Three major secretases are 

postulated to be involved in the proteolytic cleavage of APP. These include α-secretase [of 

which the metalloproteases ADAM17/ TACE and ADAM 10 are likely candidates], beta 

APP cleaving enzyme [BACE, formally known as β-secretase] and the γ-secretase. The α-

secretase cleaves within the Aβ domain of APP thus precluding the formation Aβ and 

generating non-amyloidogenic fragments and a secreted form of APP (α-APPs). In the 

amyloidogenic pathway, BACE cleaves near the N-terminus of the Aβ domain on the APP 

molecule, liberating another soluble form of APP, β-APPs and a C-terminal fragment (C99) 

containing the whole Aβ domain. The final step in the amyloidogenic pathway is the 

intramembranous cleavage of the C99 fragment by γ-secretase, to liberate the Aβ peptide 

(reviewed in Ref. 1). 
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Two additional cleavage sites on the APP-C terminal fragment have been identified and 

termed the ε-cleavage site and ζ-cleavage site. The ε-cleavage site occurs 7-9 residues distal 

to the γ-secretase cleavage site at Aβ40/42, generating the APP intracellular domain (AICD) 
5-8. The AICD has been reported to bind to different proteins and may be involved in several 

intracellular pathways, including apoptosis, neuronal growth and regulation of gene 

expression (reviewed in 9). It is interesting that the ε-secretase site is equivalent to the S3 site 

of the Notch receptor 10 liberating the intracellular domain of Notch (NICD), which like 

AICD translocates to the nucleus and activates target gene expression (see below for more 

discussion of Notch processing). These findings suggest that cleavage at the ε-site may be a 

common event for the processing of type I transmembrane proteins cleaved by γ-secretase, to 

liberate fragments involved in cell signalling. Recently, an additional Aβ fragment, referred 

to as Aβ46 has been identified 11-13. This fragment, unlike Aβ40/42 is exclusively 

intracellular and has not been shown to be secreted from the cell. The pathological relevance 

of this longer form of Aβ is unknown, however known inhibitors of γ-secretase that reduce 

Aβ40/42 production, lead to an intracellular accumulation of the potentially pathological 

Aβ46 11,13 which is important to consider when developing agents that target Aβ42 

production.  

The finding of additional Aβ fragments (Aβ37, 38 or 39) in cells and brain 

homogenates from humans and transgenic mice and the identification of additional cleavage 

sites may suggest that there are multiple γ-secretase enzymes (further discussion below). 

However, one model proposed by Zhao et al., 13 suggests a single γ-secretase enzyme with a 

broad range of activity, performing multiple cleavages sequentially along the APP-C99 

fragment. In this model, (Figure 2) the APP-C99 fragment is first cleaved at the ε-site (Aβ49) 

and then undergoes further cleavage at the ζ-site to generate Aβ46. Additional cleavage of 

this fragment into Aβ43 can occur, which is then processed further into Aβ40 followed by 

additional cleavage liberating Aβ37. Alternatively, Aβ46 can be cleaved into Aβ42, which is 

processed further into Aβ38/39. Evidence for a single γ-secretase moiety is provided by the 

observation that a number of inhibitors of this enzyme reduce the levels of all Aβ species. 

However, the single catalytic site model inadequately explains the concurrent production of 

the major Aβ40 and Aβ42 species. In addition, this model doesn’t explain the observations 

that Non-steroid anti-inflammatory drugs, target Aβ42 specifically without altering NICD or 



5 

 

AICD production, and that some γ-secretase inhibitors reduce Aβ40 or Aβ42 production but 

not Aβ46 levels. Although it has been suggested that a single enzyme could possess two 

catalytic sites 13 it however doesn’t rule out multiple γ-secretase enzymes or other proteases 

with γ-secretase activity existing.  

THE γ-SECRETASE ENZYME: STRUCTURE, ASSEMBLY AND 

POSTULATED FUNCTION OF ITS COMPONENTS. 

Structure 
The γ-secretase enzyme is thought to be an aspartyl protease that has the unusual ability to 

regulate intramembrane proteolysis (RIP) for a growing list of type 1 integral membrane 

proteins which include, APP, APP like proteins (APLPs), E-Cadherin, CD44, lipoprotein 

receptor related protein (LRP), Notch, sterol regulatory element –binding protein (SREBP), 

interferon response element (IRE1) and activated transcription factor 6 (ATF-6) (for recent 

review see 14). The mechanism of RIP and γ-secretase activity is unknown. However a 

transient hydrophilic environment for catalysis within the lipid membrane must be created. 

Furthermore, the enzyme (or an enzyme domain) must have the ability to bend and unwind 

the α-helical substrates, exposing their amide bonds to hydrolysis. Therefore it is conceivable 

that the γ-secretase enzyme is an integral protein of the lipid bi-layer and contains a number 

of proteins that may have different functions within an enzyme complex. The exact 

conformation or molecular architecture of the γ-secretase enzyme remains unclear. However, 

large molecular mass complexes of ~250 kDa 15,16 ~500 kDa 17-21 and ~2000 kDa 17,22 have 

been identified. 

Over the last few years biochemical and genetic approaches have identified four 

components of the γ-secretase complex, presenilins, nicastrin, anterior pharynx defective 

(aph-1) and presenilin enhancer 2 (pen-2). Over-expression and expression knockdown 

studies have provided strong evidence that these proteins are essential for γ-secretase activity 
19,23-28. Subsequent reconstitution studies in non-mammalian cells have provided evidence 

that these are the only components responsible for γ-secretase catalytic activity 29-31. 

Presenilins are nine-pass transmembrane proteins and considered to possess enzyme catalytic 

activity. Nicastrin is a single pass membrane protein with a large ectodomain that is heavily 
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glycosylated which plays a vital role in γ-secretase assembly. Aph-1 occurs as a seven-pass 

transmembrane protein that exists in two homologous forms, located on chromosome 1 and 

chromosome 15 (aph-1a & aph-1b) respectively; 23. Aph-1a undergoes further splicing to 

generate a long and short isoform of aph-1a, with the short isoform more abundantly 

expressed in most tissues 25. Aph-1 shares its function with nicastrin in forming the stable 

complex. The smallest component Pen-2 is a two-pass transmembrane protein that is thought 

to activate presenilin endoproteolysis 27,32. Thus, overall the enzyme possesses 18 

transmembrane domains making it difficult to elucidate the crystalline structure of the 

enzyme.  

Structural analysis of the gamma secretase enzyme has mainly been through protein 

purification, visualisation using electron microscopy and analysis of particle images to 

provide a 3D- reconstruction of the purified complex 33,34. These studies have revealed a 

globular structure for γ-secretase. The low-resolution 3D images of purified γ-secretase has 

revealed a central cavity with two low density regions and two openings indicating a possible 

existence of a substrate gating and releasing mechanism. How this may exist in a lipid 

environment remains to be determined. However, the active component and the active 

catalytic site of this enzymatic complex are yet to be identified. A clue as to how this may 

occur comes from successful crystallisation of a bacterial intramemebrane protease (GlpG). 

GlpG activity actually takes place in a V-shaped cavity separated from the lipid environment 

by six transmembrane domains 35. More recently, the crystal structure of bacterial signal 

peptide peptidase (SPP) was determined 36. The highly conserved SPP protease, performs 

intramembranous cleavage of type 2 transmembrane proteins and shares some similar 

characteristics to presenilins (discussed further below). The crystalline structure of the 

bacterial SPP showed a tetrameric structure, which is bowled shaped with an opening at its 

base of approximately 96 Ǻ in diameter, predicted to be the membrane association surface. 

The ridge inside the bowel is restricted to 40 Ǻ. A concave surface creates the substrate 

binding pockets for four catalytic active sites within the tetramer structure. These structural 

studies with bacterial proteases have provided insight into high resolution structure and 

catalytic site of enzymes that perform intramembrane cleavage. Similar high resolution 

studies with the mammalian γ-secretase complex, although more difficult, are required to 

provide detail of the catalytic core of the γ-secretase complex. In addition, structure of the 

complex in the presence of lipids, to simulate the lipid membrane has not been established. 
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Although several techniques can be used to provide structural information of membrane 

bound proteins, all of them suffer from notorious problems associated with handling 

membrane proteins. The proteins are adapted to the lipid bi-layer and tend to denature when 

extracted from the environment. The region of hydrophobic residues will need to be stabilised 

by detergents during preparation for structural analysis. High resolution X- ray 

crystallography methods have improved in which 3D crystallisation methods can be used. 

However, establishing the atomic structure of membrane protein is still risky as high 

resolution 3D crystals are required 37. Nuclear magnetic resonance (NMR) is a structural 

analysis that doesn’t require 3D crystals. However, this requires the membrane proteins to be 

solubilised, causing issues with protein stability 37. An alternative technique is 2D electron 

crystallography, in which the protein is reconstituted into 2D crystals in the presence of 

lipids, thus providing the native environment for membrane bound proteins or complexes, 

such as γ-secretase. 

 

Assembly And Postulated Function Of The γ-Secretase Components. 

Assembly Of The γ-Secretase Complex. 

The core subunits of the γ-secretase enzyme are essential for the maturation and 

trafficking of the enzyme 38,39. Interactions between the transmembrane domain of NCT and 

Aph1 play a significant role in the formation of the first stable sub-complex during the 

process of the active enzyme formation 40. Evidence suggests that this interaction may occur 

very soon after APH-1 synthesis 41 with the conserved GXXXG motif within transmembrane 

4 of APH-1 important for this interaction 42,43. This interaction has been shown to be 

independent of PS1 or PEN-2 as nicastrin mutants have been shown to restore APH-1 

expression but not expression of the other components 44. More recent evidence suggests that 

nicastrin is critical for the correct assembly of the γ-secretase complex within the 

endoplasmic reticulum and the intracellular trafficking of the complex to the cell surface 45,46. 

It is thought that the presenilin holoprotein is then incorporated into the aph-1: NCT sub-

complex, nicastrin undergoes post-translational modifications and the complex is transported 

to the cell surface (or other Aβ generating compartments, i.e. TGN) as a trimeric complex. 

Pen-2 is then incorporated into the complex possibly through an interaction with presenilins 

with the “DYLSF” domain of pen-2 and a “NF” motif on transmembrane 4 of PS1 shown to 
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be critical for the interaction between these proteins 47-49. Ablation of pen-2 results in 

significantly reduced PS1 endoproteolysis and Aβ production, suggesting that pen-2 is 

essential for the proteolytic cleavage of presenilins into the active components 19,23,26-28. 

However, it is unclear whether pen-2 is the elusive protease responsible for this cleavage 

event. Once the presenilins are cleaved an active γ-secretase complex is formed.  

Function Of The Enzyme Components 

Evidence to date has suggested that the presenilins (PS1 and PS2) are the most critical 

component of the γ-secretase complex and maybe the catalytic component of this enzyme. 

Findings that mutations in PS1 account for the majority of inherited early onset forms of AD 

and result in the overproduction of the highly amyloidogenic Aβ42 50-52 provided the initial 

evidence that PS1 facilitates γ-secretase activity. Subsequent studies provided evidence that 

presenilins may be the elusive γ-secretase enzyme. Many reports have shown that presenilin 

ablation or mutagenesis of two highly conserved aspartate residues within transmembrane 

domains 6 and 7 result in a reduction in Aβ levels in vitro and in vivo53-56. Furthermore, 

aspartyl protease inhibitors and transition state analogue inhibitors designed to target the 

active site of the protease, all reduce Aβ40 and Aβ42 levels and have been shown to affinity 

label and bind to PS1 22,56,57. In addition, physical interactions between presenilins and γ-

secretase substrates have been identified (reviewed in 58). Although initial evidence strongly 

implicated presenilins in γ-secretase catalytic activity they do not exhibit typical aspartyl 

protease structural characteristics, in particular they lack the typical D(T/S)G motif required 

for the active site of an aspartyl protease. However, presenilins do contain the two aspartyl 

residues (eg: D257 and D385 for PS1) which are either critical for the active site on the γ-

secretase complex or constitute the active site. The formation of this aspartyl catalytic site 

could result from one or multiple presenilin molecules. The full length PS1 protein is rapidly 

endoproteolytically cleaved within its characteristic large hydrophilic loop into amino- and 

carboxy-terminal fragments (NTF/CTF) of ~27 and ~17 kDa, respectively 59,60. These 

fragments are thought to interact with each other to form the catalytic component of γ-

secretase 61,62. The stoichiometry and the nature of the interaction between these fragments 

remain unclear. It has been shown by many studies that the NTF:CTF form a heterodimer in 

mammalian cells 16,63-66 leading to suggestions that this heterodimer is the active γ-secretase 
67. However, Cervantes and colleagues 2001 68 provided evidence that the presenilin 

fragments can form a tetramer by identifying heterodimers as well as NTF and CTF 
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homodimers in yeast. Evidence for heterodimer and NTF homodimer (but not CTF 

homodimer) formation has been provided by photoaffinity labelled crosslinking studies 69. 

This formation provides a core of aspartyl residues required for aspartyl protease activity. 

However, it has yet to be established wether the hypothetical “core” is formed between 

fragments from one PS1 molecule or multiple molecules within the complex.  

Other proteases also share the unusual aspartyl motif GxGD and perform 

intramembranous cleavage of type I membrane proteins (reviewed in 70). One such protease 

that has been widely studied due to its similar characteristics to presenilins are the signal 

peptide peptidases (SPPs). These proteases are members of a larger group of intramemebrane 

cleaving proteases (I-Clips) which have only a few endogenous substrates. They exist as 

monomers 71 and homodimers 72, however, the form that is actively involved in the cleavage 

process is still unclear. Although presenilins are to some extent similar to the SPPs, 

differences do occur. Presenilins mediate the cleavage of type I transmembrane proteins 

whereas SPPs process type 2 membrane proteins 71. In contrast to presenilins, SPPs do not 

require interactions with other co-factors or undergo endoproteolysis for functional activity. 

Moreover, the topology of SPP is opposite to that of PS, such that, SPP cleaves 

transmembrane substrates with a membrane orientation opposite that of γ-secretase substrates 
73. Despite these differences the activities of presenilins and SPPs are similar. 

The SPPs are evolutionarily conserved as they have been identified in Archea 

bacteria, Yeast plants and animals 74. The amino acid sequence identity between human 

presenilin and SPPs is very low (20%) 74, however, they possess identical active site motifs 

YD, PAL and GXGD. Aspartate residues in the YD and GXGD sites are highly conserved 

and mutation of these residues abolishes the catalytic activity of both SPPs and presenilins 
71,75. γ-Secretase inhibitors that target presenilin- mediated activity also alter SPP activity, 

likewise some of the SPP inhibitors also suppress presenilin- mediated enzyme activity 75,76. 

By showing that active site-directed γ-secretase inhibitors label the SPP homodimer, Nyborg 

and colleagues72 showed that the homodimer, rather than the monomer contains the active 

site. This is similar to presenilins where it has been proposed that dimerisation of the 

presenilin N and C-terminal fragments form the catalytic active GxGD site 16,63-66. Isolating 

SPPs and presenilins from cell membranes and solubilising with detergent, Sato and 

colleagues 75 showed that these proteins share certain biochemical properties. Both proteases 

have loose sequence specificity for substrates and recognise α-helical regions of substrates 
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and cleave within these regions. Inhibition of a substrate-based helical peptide that binds to a 

site distinct from the active site, suggests that binding of the substrate to the outer surface of 

the protease is an important initial step before entry into the water-containing active site. This 

is a likely mechanism of other membrane embedded proteases such as the S2P 

metalloproteases and the rhomboid family of serine protease and also a mechanism suggested 

for γ-secretase 77. Recent evidence has suggested that like γ-secretase activity, SPPs cleaves 

the substrate at multiple sites within the TMD 75,78 although the exact mechanism by which 

this occurs remains unknown for both SPP and γ-sectretase. Most surprisingly, the cleavage 

site specificity of SPP can be altered by certain non-steroidal anti-inflammatory drugs 

(NSAIDs) which are known to alter the cleavage of γ-secretase activity on APP 79. The 

similarities and differences exhibited by SPP and γ-secretase could offer considerable insight 

into determining enzyme structure and developing novel inhibitors that target one enzyme 

over the other.  

Apart from functioning in the assembly process of the γ-secretase complex, the core 

enzyme components have also other postulated functions. Evidence has shown that nicastrin 

is essential for the interaction between the complex and APP-C99 and thus may act as a 

receptor for γ-secretase substrates 46,80. This suggests that nicastrin maybe a substrate docking 

site in addition to its role as a scaffold for building the active complex. Three dimensional 

electron microscopy studies have suggested similar conformation where nicastrin ectodomain 

and other regions (TM or HL) of the components may act as a plug that regulates the opening 

of the catalytic pore [reviewed in 81]. 

Although aph-1 shares its function with nicastrin in the assembly and stabilisation of 

the γ-secretase complex, it may also be critical for the activity of the fully constructed γ-

secretase complex. As well as binding to immature components of γ-secretase in early stages 

of complex formation, APH-1 also interacts with the mature forms of PS1, nicastrin and 

PEN-2 42,82. Furthermore, recent evidence suggests that this interaction occurs on the cell 

surface where it also binds the γ-secretase substrate, Notch and facilitates its cleavage 82. 

Structural and functional similarities between aph-1 and other proteases that possess the 

ability for intramembranous cleavage (ie PS1, rhomboid), 42,83 would suggest that this 

transmembrane protein might have an enzymatic function within the complex. However, aph-

1 sequence homology to known proteases and evidence for a role as a protease is currently 

lacking. 
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Evidence suggests additional roles for pen-2 within the γ-secretase complex. The C-

terminal end of pen-2 has been shown to be important for γ-secretase activity since altering 

the length of the pen-2 C-terminus by addition or deletion of residues has been shown to 

reduce Aβ40 and 42 generation without altering the binding of pen-2 to the complex 47 

suggesting that pen-2 may have an alternative function within the complex. One suggestion 

put forward by Hasegawa and colleagues 47 is that the C-terminus of pen-2 may be a 

linker/space molecule that maintains the spatial interactions between proteins within the 

complex. However, recent evidence using pen-2 C-terminal loss of function mutations 

suggest that the C-terminus acts as a “molecular clamp” holding together the presenilin 

fragments and the whole γ-secretase complex 84. If this is the case, then pen-2 is an integral 

part of the catalytic process holding the complex together whilst the γ-secretase products are 

generated. 

Two additional proteins, TMP21 and CD147 have been shown to co-purify with the γ-

scretase complex and modulate γ-secretase activity. TMP21 is a type 1 transmembrane 

protein and a member of a p24 cargo-family which may have a signalling role in the sorting 

and transport of proteins from the endoplasmic reticulum to the Golgi 85,86. Chen and 

colleagues showed that TMP21 is a member of the complex as it was isolated in a high 

molecular weight presenilin complex, interacted with all of the known components of the γ-

secretase complex, co-localised with the complex components in the ER, Golgi and cell 

surface and destabilised from the complex in the absence of the presenilins and pen-2. 

Although the over-expression of TMP21 did not alter γ-secretase activity, its suppression 

resulted in and increase in Aβ40 and Aβ42. However, suppression of TMP21 did not alter the 

production of AICD, Notch cleavage to generate NICD or cleavage of E-cadherin to generate 

CICD. These results are consistent with the notion that γ- and ε- secretase cleavage activities 

are independently regulated and indicate a role for TMP21 in modulating γ-secretase activity 

to generate Aβ. This role for TMP21 appears to be independent of its role in protein transport 

since the suppression of both TMP21and p24a (a member of the p24 cargo family that 

interacts with TMP21) does not result in additional increases in Aβ production to that 

observed following the suppression of TMP21 only 87. This finding led the authors to 

postulate that there are two pools of TMP21, a major pool that is stabilised by, p24a and has 

no role in Aβ production and a minor pool that modulates Aβ production, independent of 
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p24a. Although, further investigation is required to determine the precise mechanism of 

action, it appears that TMP21 may function to regulate intramembrane proteolysis controlling 

γ-secretase activity and thus preventing the over-production of Aβ. This modulator role for 

TMP21 is important to consider when elucidating mechanisms on how γ-secretase activity is 

altered (for example by presenilin mutations) resulting in enhanced Aβ40 and Aβ42 

production. 

CD147 is a member of the immunoglobin superfamily that is involved in fetal 

development and retinal function as well as many other neurological processes such as 

development of the nervous system, involvement in spatial learning and recently in 

modulating beta amyloid accumulation 88,89. The mechanism by which CD147 modulates Aβ 

accumulation is unclear, with two studies proposing different mechanisms of action. Zhou 

and colleagues (2005) 88 showed that CD147 is possibly a regulatory component of the γ-

secretase complex. In their study it was observed that CD147 depletion using RNA 

interference resulted in elevated Aβ40/42 production, without affecting expression levels of 

NCT, PEN-2, APH-1 and PS1 88. Vetrivel and colleagues however, showed that CD147 did 

not interact with the other γ-secretase complex components and concluded that it was not an 

integral part of the complex. Instead, the authors showed that CD147 mediates the 

degradation of Aβ possibly via stimulating the production of the metalloproteases (MMPs). 

The discrepancies between these two studies could be due to methodological differences, and 

it is possible that CD147 may have varying functions in different cell lines. Vetrivel and 

colleagues used HEK-293 (compared to CHO cells used the Zhou et al study) over-

expressing CD147, which is known to contain an abundance of proteases that degrade Aβ. 

Although CD147, along with TMP21, co-purified in a high molecular complex with 

endogenous γ-secretase, these proteins could not be affinity captured with γ-secretase 

inhibitors, indicating that they are not part of the active γ-secretase complex 90. These 

findings support that both CD147 and TMP21 may act to control Aβ levels within the cell but 

they most likely are not part of the core components of the γ-secretase complex, affecting Aβ 

levels indirectly. 

Presenilin Mutations 
In the early 90’s genetic linkage studies, mapped a new AD gene to the AD3 locus on 

chromosome 14q24.3 91,92. Sherrington and colleagues in 1995 93 located the presenilin 1 
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PSEN1 gene in two clusters of the AD3 locus. A second gene was mapped to the AD4 locus 

on chromosome 1q31.42, termed presenilin 2 (PSEN2) in which mutations were first 

identified in a Volga German kindred containing seven related families, clinically diagnosed 

with autosomal dominant EOAD 94,95. The protein products PS1 and PS2 share almost 67% 

sequence similarity but may have distinct functions (see below). Mutations in PS1 and PS2 

account for the majority of early onset familial Alzheimer’s disease cases. To date 176 

mutations in PS1 and 14 mutations in PS2 have been reported in 390 and 23 families, 

respectively (for list of mutations refer to http://www.molgen.ua.ac.be/ADMutations/). Cases 

with PS2 mutations typically have later ages of onset of AD with the majority associated with 

an average age of onset considered to be late onset AD (70-73yrs) 94-97. In contrast, mutations 

in PS1 are associated with earlier ages of onset ranging from 24-59 yrs old. Although the 

mutations are spread throughout the presenilin molecules, they appear to be concentrated 

around or within the transmembrane regions of the molecule, suggesting that these regions 

may be critical for protein function. Indeed, the conserved aspartate residues (D257 and 

D385) in transmembrane domain (TMD) 6 and 7 are critical for γ-secretase activity and may 

constitute the catalytic core of the complex 21,54. Other residues such as R389, the C-terminal 

PAL motif and Cys residues in transmembrane domains 1 and 8 also appear to have 

important roles in catalytic activities, and in the formation of the postulated ring-like structure 

for the presenilins [reviewed in 81]. 

 

For many years it was thought that presenilin mutations led to an increase in the more 

pathogenic Aβ42 or an increase in the Aβ42/40 ratio in vitro and in vivo 50-52,98-102. However, 

this notion is changing with a loss of function explaining an increase in Aβ42 production 
103,104. Some evidence for presenilin mutations causing a loss of function has come from 

studies that have showed that presenilin mutations result in the loss of Notch signaling 105. 

Recent experiments have lead us to re-evaluate the effects of clinical presenilin mutations on 

APP proteolytic processing in cells deficient of wild-type PS1 or in stably transfected cell 

lines 106,107. These studies have measured the absolute levels of Aβ40 and Aβ42 generated 

from these cells and confirmed that the majority of the PS1/PS2 mutations resulted in an 

increase in Aβ42/Aβ40 ratio. However, these studies also showed that some mutations led to 

a reduction in the levels of Aβ40, together with the two additional fragments generated from 

γ-secretase enzyme activity [Notch and APP intracellular domains, (NICD and AICD, 

http://www.molgen.ua.ac.be/ADMutations/�
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respectively)] and the accumulation of APP-C99 fragments, similar to that observed in cells 

lacking presenilins 106,107. These studies suggest that these mutations maybe altering the 

“normal” function of presenilins to generate Aβ40, NICD or AICD, favoring the production 

of Aβ42.  

TARGETING γ-SECRETASE AS A POTENTIAL THERAPEUTIC FOR 
ALZHEIMER’S DISEASE. 
 

Currently, acetyl cholinesterase inhibitors (donepezil, rivastigmine and galantamine) and the 

N-methyl-D-aspartate receptor antagonist, memantine are the only available treatments for 

AD. Acetylcholine esterase inhibitors (AChI) prevent the breakdown of the neurotransmitter, 

acetylcholine, thereby conserving this neurotransmitter at synaptic junctions and 

compensating for loss of cholinergic circuits 108. However, in clinical trials (and in practice) 

the cognitive benefits of these inhibitors are minimal in which more than half the subjects 

show no measurable improvement. The window of efficacy in those patients in which AChI’s 

show benefit averages 6-12 months and then rapidly reduce as brain deterioration worsens 

(reviewed in 109). Another prevalent neurotransmitter is glutamate, which when released pre-

synaptically is essential in learning and memory via facilitation of the n-methyl-d- aspartate 

(NMDA) receptors allowing small influxes of calcium into stimulated nerve cells. This in-

turn triggers changes required for long term potentiation, culminating in formation of 

memory trace 110. Excess glutamate can overstimulate NMDA receptors, allowing too much 

calcium into nerve cells, resulting in functional disruption and cell death. Memantine is an 

NMDA-receptor antagonist that although shows no benefit in mild-to-moderate AD, it is 

FDA approved for the treatment of moderate-severe AD 111. Limited, but statistically 

significant benefits for improved cognition, behaviour, and activities of daily living in AD 

patients over a six-month trial period has been observed for Memantine 112. 

 

The drugs mentioned above however only treat disease symptoms without targeting the 

underlying pathology or neurodegeneration. The majority of therapeutic strategies currently 

being developed and validated target the accumulation of Aβ or its associated neuro-toxicity. 

One approach being pursued is modulating Aβ production through the use of γ-secretase 

inhibitors (GSI’s) or modulators (GSMs). However, the innate ability of the γ-secretase 
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complex to cleave other substrates, has raised concerns about the specificity, selectivity and 

toxicity of agents aimed at inhibiting or modulating γ-secretase activity. 

 

γ-Secretase: The Multi-Substrate Enzyme 

Currently it is thought that the γ-secretase enzyme cleaves more than 50 different 

transmembrane proteins 113-115, this has dubbed the enzyme with the name “the proteasome of 

the membrane”. The list of substrates for γ-secretase include epithelial (E)- and neural (N)-

cadherins that are thought to play a major role in cell adhesion 116, CD44 (role) 117 and Erb-

B4 which plays a significant role in neuronal development by regulating cell proliferation and 

differentiation 118. The intracellular domain released from the cleavage of Erb-B4 has been 

shown to mediate apoptosis. A more comprehensive list of substrates are shown in table 1. 

Apart from APP, the second most studied substrate for the γ-secretase, and possibly 

the most pharmacologically relevant, is the Notch receptor 119-121. Notch receptors play a vital 

role in cell signalling events and not only during embryogenesis but also in the adulthood 
122,123. The signalling pathway is activated with one of five DSL (Delta and Serrate) ligands. 

During maturation, the Notch receptor is first cleaved by a furin like protease, at the S1 site 

of the extracellular domain resulting in two fragments, the Notch extracellular domain 

(NECD) and the transmembrane domain (NTM) which are held together by a 

heterodimerisation domain (HD) 124. Upon interaction with its ligand, the metalloprotease, 

ADAM cleaves at the S2 site of extracellular domain of the Notch receptor (Figure 3). Two 

ADAMs have been implicated in the cleavage of Notch at the S2 site, ADAM10 and 

ADAM17. Interestingly, these enzymes also perform α-secretase cleavage of APP, providing 

additional evidence that Notch undergoes similar proteolytic processing to APP. ADAM10 

itself has also recently been shown to undergo γ-secretase cleavage to liberate an ICD which 

translocates to the nucleus and thought to be involved in gene regulation 125. This may also be 

a process by which ADAM10 activity is regulated.  

Following cleavage at the S2 site, the NTM then undergoes proteolysis at the S3/S4 

sites by γ-secretase, liberating the Notch intracellular domain (NICD) which then translocates 

to the nucleus and activates target gene expression 10,126,127. The intramembrane cleavage of 

Notch is referred to as the dual-intramembrane proteolysis since there are two γ-secretase 

cleavage sites (S3 and S4). The S3 cleavage site occurs at the interface between the cytosol 
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and membrane liberating the NICD 10,126. The S4 cleavage site near the middle of the 

transmembrane domain has been shown to liberate a fragment referred to as Nβ 128,129. The C-

terminus of Nβ has a similar sequence to that of Aβ. Further, as with Aβ42 levels, presenilin 

mutations have been associated with an increase in Nβ25, the longer version of Nβ  128. The 

function of this fragment within the cell still remains unknown. 

Notch and APP have been shown to compete for γ-secretase activity. Using an in vitro 

γ-secretase activity assay that cleaves Notch and APP-based substrates, Kimberly et al., 130 

showed that these substrates prevented each other’s cleavage, suggesting that the same γ-

secretase complex is responsible for the processing of both substrates. Berezovska et al., 131 

showed that treatment of neurons with the Notch ligand delta led to a dose dependent 

reduction in Aβ levels and over-expression of APP led to a reduction in Notch signalling. 

Further, over-expressing either of the two direct substrates for γ-secretase, C99 and the N∆EC 

(truncated version of NECD that requires a PS1-dependent cleavage event), led to a reduction 

in generated products (NICD and Aβ, respectively) 132. Further, transfection with NICD also 

down-regulated Aβ production and was associated with a reduction in PS1 transcription and 

protein levels. These results suggest that competition may exist for the γ-secretase catalytic 

site between different substrates where generation of a product from one substrate may 

regulate the proteolytic processing of other γ-secretase substrates. Further, the work of Lleo et 

al.132 suggests that Notch signalling may exert some control on PS1 expression which may 

ultimately impact on APP processing to generate Aβ. Although these studies suggest that the 

same enzyme complex performs the majority of the processing of the substrates, there is also 

strong evidence that multiple enzyme complexes with varied functions may also exist.  

The existence of two presenilin molecules (PS1 and PS2) as possible catalytic 

components of the γ-secretase enzyme would suggest that multiple complexes could possibly 

occur. Although PS1 and PS2 share an overall protein sequence similarity of 67%, several 

lines of evidence suggest that these proteins may have quite distinct biological functions. 

Mice lacking PS1 die before birth and the embryos display severe skeletal and brain 

deformities, whilst mice lacking PS2 develop a mild pulmonary fibrosis and haemorrhages 

with age 55,133-135. Neuronal cultures isolated from PS1 ablated mice when compared to those 

isolated from PS2 knockout mice exhibit lower Aβ production 134,136. Lai and colleagues also 

provided evidence suggesting the existence of distinct PS1 containing and PS2 containing 



17 

 

complexes 136. In vivo, PS2 and PS1 transgenic mice have differential effects on γ-secretase 

activity 137. There is evidence to suggest that two Aβ generating complexes may exist, 

whereby PS1 containing complexes produce both Aβ40 and Aβ42, and PS2 containing 

complexes are involved in Aβ42 (but not Aβ40) production. Recently, Placanica and 

colleagues 2009 138 provided further evidence for distinct PS1 and PS2 γ-secretase complexes 

in the generation of Aβ. The authors described that the two complexes are in dynamic 

equilibrium, possibly under control of Pen-2 expression.  

As there are 2 presenilin genes (PS1 and PS2) and 3 Aph-1 genes (Aph-1aS, Aph-1aL, 

and Aph-1b), at least 6 different γ-secretase complexes can theoretically occur within a cell. 

Evidence suggests that the aph1a containing complexes are crucial for Notch signalling 

during embryogenesis 139,140. Aph-1a knockout mice are embryonic lethal compared to Aph-

1b knockout mice, which appear to be phenotypically normal, and the absence of Aph-1a 

disrupts the formation of an active γ-secretase complex. 140. Collectively, these data suggests 

that complexes containing aph-1a are active and those containing aph-1b are possibly 

redundant. However, aph-1b complexes have recently been shown to have a role in a 

neurregulin-1 (Nrg-1) signalling. Aph-1b knockout mice show signs of schizophrenia 

including hypersensitivity to psychiatric drugs, sensorimotor gating abnormalities and 

working memory deficits 141. This finding is to be expected given the enrichment of aph-1b in 

the mouse pre-frontal cortex 141. In summary, there is sufficient evidence to suggest the 

presence of multiple γ-secretase complexes with different functional activities and substrates. 

These characteristics are an important consideration when developing appropriate agents 

aimed at inhibiting Aβ production. 

 

Inhibiting Or Modulating γ-Secretase Activity 
 

A number of compounds that inhibit or modulate γ-secretase activity have been 

identified. These include transition state analogues (e.g: L-685,458, WPE-II-31C), dipeptidic 

inhibitors (DAPT, LY450139), sulphonamide (BMS-299897), kinase inhibitor (imatinib) and 

NSAIDs (R-Flurbiprofen). Transition state analogues are compounds with a chemical 

structure, resembling the transition state of a substrate molecule in an enzymatic reaction. Of 

these, L-685,458 has been extensively studied. This inhibitor was originally shown to inhibit 
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γ-secretase activity on APP to reduce Aβ generation 142,143 providing some initial evidence 

that this agent could be a suitable amyloid lowering drug. However, any promise that this 

agent may be a disease modifying drug was soon dispelled as it was also shown to inihbit the 

cleavage and subsequent signalling of a number of other substrates including, Notch 144,145, 

ErbB-4 121,146 and gamma-protocadherins 147, resulting in the detrimental effects on a number 

of cellular processes such as cell development, proliferation and adhesion. The ability of this 

inhibitor to bind PS1 142,148 provided evidence that it may be used as a detection agent for γ-

secretase. Indeed radiolabelled [H3] L-685, 458 was shown as an excellent tracer for γ-

secretase activity in vivo 149. This agent could also show some promise for treatment of 

cancers. The inhibitors effects on Notch processing has revealed that this inhibitor exerts anti-

tumour activity 150. The chronic treatment of lymphoblastic leukemia cell lines with L-685, 

458 has been shown to reversibly inhibited cell proliferation and caused cell block in 

sensitive T-cell acute lymphoblastic leukemia cell lines 151. Despite showing some promise as 

a tumour suppressor, the in-vitro effects of this inhibitor on APP and other substrates indicate 

that that this would not be a suitable treatment for AD.  

Amongst the first dipetide inhibitor reported to be an active agent in-vivo, where it 

inhibited Aβ production in the plasma and brain in an APP transgenic mouse model was 

DAPT 152,153. Modifications to DAPT led to the development of more potent inhibitors 

including compound E 57 and related analogues that have shown better efficacy in vivo, 

including LY-411,575 154 and LY-450,139 155,156. Although Ly-411,575 chronically reduced 

Aβ levels in plasma and brain, elevated doses resulted in severe gastrointestinal toxicity and 

interfered with maturation of B- and T-lymphocytes 157,158, presumably due to its effects at 

inhibiting cleavage of other substrates such as Notch. Clinical studies have been reported for 

only one γ-secretase inhibitor, LY-4150,139 155,156. These reports showed that the inhibitor 

reduced plasma Aβ levels but had no effect on CSF Aβ, reflecting the low doses being used. 

Although increasing the dose of this inhibitor may show more beneficial results in the CNS, 

caution must be taken considering the toxic side effects of its analogues. 

A recent clinical trial with the NSAID, R-flurbiprofen (also called Tarenflurbil and 

Flurizan™) as a treatment for AD failed at phase 3, despite showing promising results in 

phase 2 159. In phase 2 clinical trials 160 compared to placebo treated patients with mild-AD, 

those administered R- flurbiprofen showed improvements on ADCS-ADL scale (an outcome 
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measure of drug efficacy that is commonly used in AD clinical trials). However, in a large 

phase III clinical trial in mild AD patients, those receiving R-flurbiprofen significantly 

deteriorated more than the placebo treated patients on the Clinical dementia rating scores 159. 

A simple explanation of the failure of R- flurbiprofen could be that γ-secretase enzyme is not 

a suitable target. If this is the case than perhaps the same can be said for other drug agents 

that target the Aβ molecule and therefore questioning the validity of the amyloid hypothesis. 

However, the failure of the trial could simply be due to the weak pharmacological activity in 

the CNS and the poor pharmokinetic profile (as shown by the high doses (-800 mg) of this 

drug that were required to show benefits in phase II trials. In addition, anti-cytochrome 

oxidase (COX) activity at these high doses, was most likely an explanation for severe gastro-

intestinal side effects (peptic ulcers) in several of those patients treated with R-flurbiprofen (8 

compared to only 1 in placebo group) 159. The inhibitory effects of NSAIDs on microglia may 

also contribute to the failure of this agent. Microglial, surround plaques and activate 

phagocytosis and subsequent clearance of Aβ and also stimulate compensatory neurogenesis 

in the hippocampus 161. Inhibiting microglia activation could thereby compromise clearance 

of Aβ and neuronal homeostasis.  

Despite the apparent failure of gamma secretase inhibitors and modulators, the enzyme is still 

pursued as target for developing appropriate therapies. Assessing the efficacy of a number of 

kinase inhibitors at reducing Aβ production without altering Notch cleavage showed that the 

Ab1 kinase inhibitor imatinib (GleevecTM) exhibited the desired effects 162. Similar results 

were shown with an inhibitor of Janus kinase 3 (Jak3) inhibitor 163. Screening of large drug 

libraries for those agents that reduce Aβ with no effect on Notch processing are also currently 

being pursued 164. Although, APP and Notch appear to be currently the most physiological 

and pharmacological substrates, the other substrates also play important roles in maintaining 

cell homeostasis and are also important to consider when developing therapies aimed at 

selectively targeting Aβ. 

CONCLUSION 
There is no doubt that the complexity of this unique enzyme makes it a very difficult target 

for developing appropriate and effective treatments for AD. Its ability to proteolytically 

cleave a plethora of membrane bound substrates highlights the importance of this enzyme in 

normal cell function. Although, intensive research in the past 10 years has revealed a wealth 
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of information, the exact structure and function of each of its components and where within 

the enzyme to target and how it is active within a hydrophobic environment with the cell 

membrane still remain unclear. More detailed insight into the molecular workings of this 

enzyme is still required not only to develop more effective drug agents, but identify cellular 

pathways in which gamma secretase is such a critical component.  
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Figure Legends 

 

Figure 1: Proteolytic processing of APP: A schematic of the (A) non-amyloidogenic and 

(B) amyloidogenic proteolytic processing pathways. (A) In the non-amyloidogenic pathway 

APP is cleaved by a-secretase (ADAM10/TACE) liberating an APP-C-terminal fragment 

(C83) that remains embedded in the membrane and a soluble α-APPs fragment that is 

secreted. The C83 fragment is then cleaved into a non-amyloidogenic fragment p3. An APP 

intracellular domain (AICD) is also formed which translocates to the nucleus and activating 

gene transcription. (B) In the amyloidogenic pathway, the APP molecule is cleaved by BACE 

liberating the APP-C99 fragment that remains embedded in the membrane and a secreted 

truncated form of APPs called β-APPs. The C99 fragment is cleaved by γ-secretase 

generating Aβ fragments, of which Aβ40 and Aβ42 are the major species, and the AICD. 

(Modified from 58) 

 

Figure 2: Sequential cleavage model of APP: In this model, APP-C99 undergoes a number 

of sequential cleavage events to generate Aβ40 and Aβ42. It is still unclear on whether a 

single γ-secretase enzyme or multiple enzymes cleaves the fragments at the particular 

cleavage sites. The C99 fragment is first cleaved at the e-site to generate an Aβ49 fragment 

and liberating the AICD.  The Aβ49 fragment then undergoes cleavage at the z-site to 

generate Aβ46. This is the parent fragment which then undergoes cleavage at the g-sites; 

Aβ43 which can undergo further processing to Aβ40 or Aβ42, which can undergo further 

cleavage to Aβ38/39. (Modified from 13). 

 

Figure 3: Proteolytic processing of Notch: During maturation, the Notch receptor is first 

cleaved by a furin like protease, at the S1 site of the extracellular domain resulting in two 

fragments, the Notch extracellular domain (NECD) and the transmembrane domain (NTM) 

which are held together by a hetero-dimerisation domain (HD). Upon interaction with its 

ligand, the metalloprotease, ADAM cleaves at the S2 site of extracellular domain of the 

Notch receptor. Following cleavage at the S2 site, the NTM then undergoes proteolysis at the 
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S3/S4 sites by γ-secretase, liberating the Notch intracellular domain (NICD), which then 

translocates to the nucleus and activates target gene expression.  The S3 cleavage site occurs 

at the interface between the cytosol and membrane liberating the NICD. The S4 cleavage site 

near the middle of the transmembrane domain has been shown to liberate the Nβ fragment. 
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