4 research outputs found

    Decoding solar wind–magnetosphere coupling

    Get PDF
    We employ a new NARMAX (Nonlinear Auto-Regressive Moving Average with eXogenous inputs) code to disentangle the time-varying relationship between the solar wind and SYM-H. The NARMAX method has previously been used to formulate a Dst model, using a preselected solar wind coupling function. In this work, which uses the higher-resolution SYM-H in place of Dst, we are able to reveal the individual components of different solar wind-magnetosphere interaction processes as they contribute to the geomagnetic disturbance. This is achieved with a graphics processing unit (GPU)-based NARMAX code that is around 10 orders of magnitude faster than previous efforts from 2005, before general-purpose programming on GPUs was possible. The algorithm includes a composite cost function, to minimize overfitting, and iterative reorthogonalization, which reduces computational errors in the most critical calculations by a factor of ∼106. The results show that negative deviations in SYM-H following a southward interplanetary magnetic field (IMF) are first a measure of the increased magnetic flux in the geomagnetic tail, observed with a delay of 20–30 min from the time the solar wind hits the bow shock. Terms with longer delays are found which represent the dipolarization of the magnetotail, the injections of particles into the ring current, and their subsequent loss by flowout through the dayside magnetopause. Our results indicate that the contribution of magnetopause currents to the storm time indices increase with solar wind electric field, E = v × B. This is in agreement with previous studies that have shown that the magnetopause is closer to the Earth when the IMF is in the tangential direction

    Substorm-induced energetic electron precipitation:impact on atmospheric chemistry

    Get PDF
    Magnetospheric substorms drive energetic electron precipitation into the Earth's atmosphere. We use the output from a substorm model to describe electron precipitation forcing of the atmosphere during an active substorm period in April–May 2007. We provide the first estimate of substorm impact on the neutral composition of the polar middle atmosphere. Model simulations show that the enhanced ionization from a series of substorms leads to an estimated ozone loss of 5–50% in the mesospheric column depending on season. This is similar in scale to small to medium solar proton events (SPEs). This effect on polar ozone balance is potentially more important on long time scales (months to years) than the impulsive but sporadic (few SPE/year versus three to four substorms/day) effect of SPEs. Our results suggest that substorms should be considered an important source of energetic particle precipitation into the atmosphere and included in high-top chemistry-climate models

    Some absorbing examples of the ionospheric effects of solar phenomena

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore