18 research outputs found

    Usp22 deficiency impairs intestinal epithelial lineage specification in vivo.

    No full text
    Epigenetic regulatory mechanisms play a central role in controlling gene expression during development, cell differentiation and tumorigenesis. Monoubiquitination of histone H2B is one epigenetic modification which is dynamically regulated by the opposing activities of specific ubiquitin ligases and deubiquitinating enzymes (DUBs). The Ubiquitin-specific Protease 22 (USP22) is the ubiquitin hydrolase component of the human SAGA complex which deubiquitinates histone H2B during transcription. Recently, many studies have investigated an oncogenic potential of USP22 overexpression. However, its physiological function in organ maintenance, development and its cellular function remain largely unknown. A previous study reported embryonic lethality in Usp22 knockout mice. Here we describe a mouse model with a global reduction of USP22 levels which expresses the LacZ gene under the control of the endogenous Usp22 promoter. Using this reporter we found Usp22 to be ubiquitously expressed in murine embryos. Notably, adult Usp22(lacZ/lacZ) displayed low residual Usp22 expression levels coupled with a reduced body size and weight. Interestingly, the reduction of Usp22 significantly influenced the frequency of differentiated cells in the small intestine and the brain while H2B and H2Bub1 levels remained constant. Taken together, we provide evidence for a physiological role for USP22 in controlling cell differentiation and lineage specification

    The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells.

    Get PDF
    Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly understood. We show that histone H2B monoubiquitination (H2Bub1) significantly increases during differentiation of human mesenchymal stem cells (hMSCs) and various lineage-committed precursor cells and in diverse organisms. Furthermore, the H2B ubiquitin ligase RNF40 is required for the induction of differentiation markers and transcriptional reprogramming of hMSCs. This function is dependent upon CDK9 and the WAC adaptor protein, which are required for H2B monoubiquitination. Finally, we show that RNF40 is required for the resolution of the H3K4me3/H3K27me3 bivalent poised state on lineage-specific genes during the transition from an inactive to an active chromatin conformation. Thus, these data indicate that H2Bub1 is required for maintaining multipotency of hMSCs and plays a central role in controlling stem cell differentiation

    Telomere Shortening Impairs Regeneration of the Olfactory Epithelium in Response to Injury but Not Under Homeostatic Conditions

    Get PDF
    Atrophy of the olfactory epithelium (OE) associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging) on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc−/−) with short telomeres compared to wild type mice (mTerc+/+) with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc−/− mice compared to mTerc+/+ mice. Seven days after chemical induced damage, G3 mTerc−/− mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc+/+ mice (p = 0.031). Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21) rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people

    p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice

    No full text
    Telomere dysfunction limits the proliferative capacity of human cells and induces organismal aging by activation of p53 and p21. Although deletion of p21 elongates the lifespan of telomere-dysfunctional mice, a direct analysis of p53 in telomere-related aging has been hampered by early tumor formation in p53 knockout mice. Here we analyzed the functional consequences of conditional p53 deletion. Intestinal deletion of p53 shortened the lifespan of telomere-dysfunctional mice without inducing tumor formation. In contrast to p21 deletion, the deletion of p53 impaired the depletion of chromosomal-instable intestinal stem cells in aging telomere-dysfunctional mice. These instable stem cells contributed to epithelial regeneration leading to an accumulation of chromosomal instability, increased apoptosis, altered epithelial cell differentiation and premature intestinal failure. Together, these results provide the first experimental evidence for an organ system in which p53-dependent mechanisms prevent tissue destruction in response to telomere dysfunction by depleting genetically instable stem cells

    Functionality, growth and accelerated aging of tissue engineered living autologous vascular grafts

    Full text link
    Living autologous tissue engineered vascular-grafts (TEVGs) with growth-capacity may overcome the limitations of contemporary artificial-prostheses. However, the multi-step invitro production of TEVGs requires extensive exvivo cell-manipulations with unknown effects on functionality and quality of TEVGs due to an accelerated biological age of the cells. Here, the impact of biological cell-age and tissue-remodeling capacity of TEVGs in relation to their clinical long-term functionality are investigated. TEVGs were implanted as pulmonary-artery (PA) replacements in juvenile sheep and followed for up to 240 weeks (∼4.5years). Telomere length and telomerase activity were compared amongst TEVGs and adjacent native tissue. Telomerase-activity of invitro expanded autologous vascular-cells prior to seeding was <5% as compared to a leukemic cell line, indicating biological-aging associated with decreasing telomere-length with each cellular-doubling. Up to 100 weeks, the cells in the TEVGs had consistently shorter telomeres compared to the native counterpart, whereas no significant differences were detectable at 240 weeks. Computed tomography (CT) analysis demonstrated physiological wall-pressures, shear-stresses, and flow-pattern comparable to the native PA. There were no signs of degeneration detectable and continuous native-analogous growth was confirmed by vessel-volumetry. TEVGs exhibit a higher biological age compared to their native counterparts. However, despite of this tissue engineering technology related accelerated biological-aging, growth-capacity and long-term functionality was not compromised. To the contrary, extensive in-vivo remodeling processes with substantial endogenous cellular turnover appears to result in "TEVG rejuvenation" and excellent clinical performance. As these large-animal results can be extrapolated to approximately 20 human years, this study suggests long-term clinical-safety of cardiovascular in vitro tissue engineering and may contribute to safety-criteria as to first-in-man clinical-trials
    corecore