222 research outputs found
Antirhea borbonica Aqueous Extract Protects Albumin and Erythrocytes from Glycoxidative Damages
Diabetes constitutes a major health problem associated with severe complications. In hyperglycemic conditions, chronically increased oxidation and glycation of circulating components lead to advanced glycation end-products (AGEs) formation, a key contributor in diabetes complication progression. In line with literature documenting the beneficial properties of herbal teas, this study evaluates the antioxidant/glycant properties of Antirhea borbonica (Ab). Ab aqueous extract effects were tested on human albumin or erythrocytes submitted to methyl glyoxal-mediated glycoxidative damages. By using mass spectrometry, Ab aqueous extracts revealed to be rich in polyphenols. All tested biomarkers of oxidation and glycation, such as AGE, ketoamine, oxidized thiol groups, were decreased in albumin when glycated in the presence of Ab aqueous extract. Ab extract preserve erythrocyte from methylglyoxal (MGO)-induced damages in terms of restored membrane deformability, reduced oxidative stress and eryptosis phenomenon. Antioxidant capacities of Ab extract on erythrocytes were retrieved in vivo in zebrafish previously infused with MGO. These results bring new evidences on the deleterious impacts of glycation on albumin and erythrocyte in diabetes. Furthermore, it reveals antioxidant and antiglycant properties of Ab that could be used for the dietary modulation of oxidative stress and glycation in hyperglycemic situations
cDC2 plasticity and acquisition of a DC3-like phenotype mediated by IL-6 and PGE2 in a patient-derived colorectal cancer organoids model
Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14(+) CD1c(+) CD163(+)) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches
Pregnancy in MNGIE: a clinical and metabolic honeymoon.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an inherited disease caused by a deficiency in thymidine phosphorylase and characterized by elevated systemic deoxyribonucleotides and gastrointestinal (GI) and neurological manifestations. We report the clinical and biochemical manifestations that were evaluated in a single patient before, during, and after pregnancy, over a period of 7 years. GI symptoms significantly improved, and plasma deoxyribonucleotide concentrations decreased during pregnancy. Within days after delivery, the patient's digestive symptoms recurred, coinciding with a rapid increase in plasma deoxyribonucleotide concentrations. We hypothesize that the clinico-metabolic improvements could be attributed to the enzyme replacement action of the placental thymidine phosphorylase
Commentary on Viewpoint: Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose?: Skeletal muscle wasting in hypoxia; a matter of altitude.
SKELETAL MUSCLE WASTING IN HYPOXIA; A MATTER OF ALTITUDE TO THE EDITOR: D’Hulst and Deldicque (1) argue that the severity of muscle atrophy incurred at high altitude is dependent on the combined effect of duration and degree of hypoxia exposure, or “hypoxic dose” (1). We do see a limitation of this concept, as it implies that someone residing in Leuven (altitude: 28 m) for 10 years would be subjected to a hypoxic dose of 2,454 km·h and incur 5% atrophy. Although the authors wrote that “it is unknown which parameter, altitude, or time spent at altitude is most decisive in the overall metric of hypoxic dose,” our illustration suggests that altitude is the prime determinant. This is further supported by the cut-off point at 4,000 m in a plot of the degree of atrophy vs. altitude (using the data in Table 1), whereas there was no clear relationship with duration of altitude residence. This cut-off point is likely related to the shape of the hemoglobin dissociation curve, where the oxygen tension at 4,000 m is such that physiologically significant arterial hemoglobin desaturation occurs (2). We acknowledge that one cannot entirely dismiss the importance of duration of hypoxic exposure, simply because skeletal muscle atrophy can only be noticed some time after net protein breakdown is initiated. However, muscle atrophy will not continue indefinitely, but will reach a new steady state (how otherwise can Tibetans still have muscle?). Finally, other adaptations than atrophy, such as an increase in hematocrit and capillarization, serve to attenuate muscle tissue hypoxia and atrophy (3) during residence at altitude. REFERENCES 1. D=Hulst G, Deldicque L. Viewpoint: Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose? J Appl Physiol. doi:10.1152/ japplphysiol.00264.2016. 2. Wagner PD, Wagner HE, Groves BM, Cymerman A, Houston CS. Hemoglobin P(50) during a simulated ascent of Mt. Everest, Operation Everest II. High Alt Med Biol 8: 32–42, 2007. doi:10.1089/ham.2006. 1049. 3. Wüst RCI, Jaspers RT, van Heijst AF, Hopman MT, Hoofd LJ, van der Laarse WJ, Degens H. Region-specific adaptations in determinants of rat skeletal muscle oxygenation to chronic hypoxia. Am J Physiol Heart Circ Physiol 297: H364–H374, 2009. doi:10.1152/ajpheart.00272.2009
Specific Binding and Mineralization of Calcified Surfaces by Small Peptides
Several small (<25aa) peptides have been designed based on the sequence of the dentin phosphoprotein, one of the major noncollagenous proteins thought to be involved in the mineralization of the dentin extracellular matrix during tooth development. These peptides, consisting of multiple repeats of the tripeptide aspartate-serine-serine (DSS), bind with high affinity to calcium phosphate compounds and, when immobilized, can recruit calcium phosphate to peptide-derivatized polystyrene beads or to demineralized human dentin surfaces. The affinity of binding to hydroxyapatite surfaces increases with the number of (DSS)n repeats, and though similar repeated sequences—(NTT)n, (DTT)n, (ETT)n, (NSS)n, (ESS)n, (DAA)n, (ASS)n, and (NAA)n—also showed HA binding activity, it was generally not at the same level as the natural sequence. Binding of the (DSS)n peptides to sectioned human teeth was shown to be tissue-specific, with high levels of binding to the mantle dentin, lower levels of binding to the circumpulpal dentin, and little or no binding to healthy enamel. Phosphorylation of the serines of these peptides was found to affect the avidity, but not the affinity, of binding. The potential utility of these peptides in the detection of carious lesions, the delivery of therapeutic compounds to mineralized tissues, and the modulation of remineralization is discussed
NFATc1 Regulation of TRAIL Expression in Human Intestinal Cells
TNF-related apoptosis-inducing ligand (TRAIL; Apo2) has been shown to promote intestinal cell differentiation. Nuclear factor of activated T cells (NFAT) participates in the regulation of a variety of cellular processes, including differentiation. Here, we examined the role of NFAT in the regulation of TRAIL in human intestinal cells. Treatment with a combination of phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187 (Io) increased NFAT activation and TRAIL expression; pretreatment with the calcineurin inhibitor cyclosporine A (CsA), an antagonist of NFAT signaling, diminished NFAT activation and TRAIL induction. In addition, knockdown of NFATc1, NFATc2, NFATc3, and NFATc4 blocked PMA/Io increased TRAIL protein expression. Expression of NFATc1 activated TRAIL promoter activity and increased TRAIL mRNA and protein expression. Deletion of NFAT binding sites from the TRAIL promoter did not significantly abrogate NFATc1-increased TRAIL promoter activity, suggesting an indirect regulation of TRAIL expression by NFAT activation. Knockdown of NFATc1 increased Sp1 transcription factor binding to the TRAIL promoter and, importantly, inhibition of Sp1, by chemical inhibition or RNA interference, increased TRAIL expression. These studies identify a novel mechanism for TRAIL regulation by which activation of NFATc1 increases TRAIL expression through negative regulation of Sp1 binding to the TRAIL promoter
Intraperitoneal but Not Intravenous Cryopreserved Mesenchymal Stromal Cells Home to the Inflamed Colon and Ameliorate Experimental Colitis
BACKGROUND AND AIMS: Mesenchymal stromal cells (MSCs) were shown to have immunomodulatory activity and have been applied for treating immune-mediated disorders. We compared the homing and therapeutic action of cryopreserved subcutaneous adipose tissue (AT-MSCs) and bone marrow-derived mesenchymal stromal cells (BM-MSCs) in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. METHODS: After colonoscopic detection of inflammation AT-MSCs or BM-MSCs were injected intraperitoneally. Colonoscopic and histologic scores were obtained. Density of collagen fibres and apoptotic rates were evaluated. Cytokine levels were measured in supernatants of colon explants. For cell migration studies MSCs and skin fibroblasts were labelled with Tc-99m or CM-DiI and injected intraperitonealy or intravenously. RESULTS: Intraperitoneal injection of AT-MSCs or BM-MSCs reduced the endoscopic and histopathologic severity of colitis, the collagen deposition, and the epithelial apoptosis. Levels of TNF-α and interleukin-1β decreased, while VEGF and TGF-β did not change following cell-therapy. Scintigraphy showed that MSCs migrated towards the inflamed colon and the uptake increased from 0.5 to 24 h. Tc-99m-MSCs injected intravenously distributed into various organs, but not the colon. Cm-DiI-positive MSCs were detected throughout the colon wall 72 h after inoculation, predominantly in the submucosa and muscular layer of inflamed areas. CONCLUSIONS: Intraperitoneally injected cryopreserved MSCs home to and engraft into the inflamed colon and ameliorate TNBS-colitis
Global Retinoblastoma Presentation and Analysis by National Income Level
Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- A nd middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs
- …