4 research outputs found

    Searching for the source of Ebola: the elusive factors driving its spillover into humans during the West African outbreak of 2013–2016

    Get PDF
    The natural ecology of Ebola virus infection remains enigmatic. No clear reservoir species has been confirmed but there is evidence of infection in a wide spectrum of mammals, including humans, non-human primates, domestic and wild ungulates and a variety of bat species, both frugivorous and insectivorous. Humans and most other species examined appear to be spillover hosts and suffer disease. Bats are the exception and are tolerant to infection in some laboratory studies. Some surveys show a low prevalence of antibodies against Zaire Ebola virus (ZEBOV) strains in bats during human outbreaks and inter-epidemic periods, and this order of mammals is considered to be the likely reservoir for the virus. Other putative sources include insects but this hypothesis is unproven in the field or laboratory. Moreover, some potential sources, such as aquatic species, have yet to be investigated. There are a number of environmental, human behavioural and ecological risk factors proposed with respect to spillover and spread. In the West African outbreak, which was unprecedented in scale and geographic spread, the source of the spillover remains unproven, although an association exists between the proposed index case and a colony of insectivorous bats. In all but a few Ebola virus disease events, spillover has only been superficially investigated and this was also the case in the West African epidemic. The authors suggest that, to address risks at the human–animal–environmental interface, using a One Health approach, more effort is needed to investigate spillover factors at the time of a ZEBOV epidemic, in addition to conducting inter-epidemic surveys in peridomestic environments. The true prevalence of ZEBOV infection in any species of bats remains unknown. Large-scale, expensive, non-randomised surveys, with low sampling numbers per species, are unlikely to provide evidence for Ebola virus reservoirs or to improve our epidemiological understanding

    Peste des Petits Ruminants at the Wildlife–Livestock Interface in the Northern Albertine Rift and Nile Basin, East Africa

    Get PDF
    In the recent past, peste des petits ruminants (PPR) emerged in East Africa causing outbreaks in small livestock across different countries, with evidences of spillover to wildlife. In order to understand better PPR at the wildlife–livestock interface, we investigated patterns of peste des petits ruminants virus (PPRV) exposure, disease outbreaks, and viral sequences in the northern Albertine Rift. PPRV antibodies indicated a widespread exposure in apparently healthy wildlife from South Sudan (2013) and Uganda (2015, 2017). African buffaloes and Uganda kobs <1-year-old from Queen Elizabeth National Park (2015) had antibodies against PPRV N-antigen and local serosurvey captured a subsequent spread of PPRV in livestock. Outbreaks with PPR-like syndrome in sheep and goats were recorded around the Greater Virunga Landscape in Kasese (2016), Kisoro and Kabale (2017) from western Uganda, and in North Kivu (2017) from eastern Democratic Republic of the Congo (DRC). This landscape would not be considered typical for PPR persistence as it is a mixed forest–savannah ecosystem with mostly sedentary livestock. PPRV sequences from DRC (2017) were identical to strains from Burundi (2018) and confirmed a transboundary spread of PPRV. Our results indicate an epidemiological linkage between epizootic cycles in livestock and exposure in wildlife, denoting the importance of PPR surveillance on wild artiodactyls for both conservation and eradication programs

    Factors associated with foot-and-mouth disease seroprevalence in small ruminants and identification of hot-spot areas in northern Nigeria.

    Get PDF
    Many small ruminants infected with foot-and-mouth disease (FMD) remain asymptomatic, with the capacity to promote silent viral spread within domestic and wildlife species. However, little is known about the epidemiological role played by small ruminants in FMD. In particular, there are few studies that examine FMD seroprevalence, spatial patterns and risk factors for exposure in small ruminants. A cross-sectional study was conducted in northern Nigeria (Bauchi, Kaduna, and Plateau States) to determine the true seroprevalence of FMD in backyard small ruminants, identify factors associated with FMD seroconversion at animal and household levels, and identify spatial patterns for FMD virus exposure. Data on animal (n = 1800) and household (n = 300) characteristics were collected using a standardised questionnaire. Sera samples from 1800 small ruminants were tested for antibodies against non-structural proteins of FMD virus. True seroprevalence was estimated stochastically to account for variability and uncertainty in the test sensitivity and specificity previously reported. Risk factors for FMD seropositivity were identified at animal and household levels and spatial patterns were determined. The overall true seroprevalence for FMD virus, in the small ruminant population tested, was estimated to be 10.2 % (95 % Credible Interval (CrI) 0.0-19.0), while State-level estimates were 17.3 % (95 % CrI 0.0-25.8) for Kaduna, 6.9 % (95% CrI 0.0-15.8) for Bauchi, and 3.6 % (95 % CrI 0.0-12.6) for Plateau. State and species were the main risk factors identified at animal level, with interaction detected between them. Compared to goats in Plateau, the odds of testing positive were higher for goats in Bauchi (Odds Ratio (OR)= 1.83, 95 % CI 1.13-2.97, p = 0.01) and Kaduna (OR=2.97, 95 % CI 1.89-4.67, p < 0.001), as well as for sheep in Plateau (OR=3.78, 95 % CI 2.08-6.87, p < 0.001), Bauchi (OR=1.61, 95 % CI 0.91-2.84, p = 0.10), and Kaduna (OR=3.11, 95 % CI 1.61-6.01, p = 0.001). Households located in Kaduna were more likely to have a higher number of seropositive SR compared to those in Plateau (Prevalence Ratio (PR)= 1.75, 95 % CI 1.30-2.36, p < 0.001), and households keeping sheep flocks were more likely to be seropositive (from 1 to 10 sheep: PR=1.39, 95 % CI 1.05-1.82, p = 0.02; more than 10 sheep: PR=1.55, 95 % CI 1.12-2.15, p = 0.008) compared to those that did not keep sheep. A hot-spot was detected in Kaduna, and a cold-spot in Plateau. These results reveal that small ruminants had been recently exposed to FMD virus with spatial heterogeneity across the study area
    corecore