115 research outputs found

    Patients’ experiences of emergency hospital care following self-harm: Systematic review and thematic synthesis of qualitative research

    Get PDF
    Rates of hospital presentation for self-harm have increased in recent years and although clinical practice guidelines on clinical provision prioritise positive patient experiences, the quality of provision remains variable. This systematic review provides an updated and extended synthesis of qualitative research on: i) patients’ experiences of treatment following presentation to hospital; and ii) patients’ perceptions of the impact of treatment on recurrent self-harm and/or suicidal ideation, and future help-seeking. 26 studies were identified for inclusion in the final synthesis. Three meta-themes emerged: i) individuals undertake extensive identity work when presenting with self-harm, navigating the process of becoming a patient and negotiating the type of patient they want to be; ii) care ranges from gentle to hostile, with care at admission and discharge being particularly disorientating and iii) negative experiences of clinical treatment may increase future self-harm. Emerging research gaps include the need for further theoretically-informed qualitative research in this area

    The clock gene <i>Bmal1</i> inhibits macrophage motility, phagocytosis, and impairs defense against pneumonia

    Get PDF
    The circadian clock regulates many aspects of immunity. Bacterial infections are affected by time of day, but the mechanisms involved remain undefined. Here we show that loss of the core clock protein BMAL1 in macrophages confers protection against pneumococcal pneumonia. Infected mice show both reduced weight loss and lower bacterial burden in circulating blood. In vivo studies of macrophage phagocytosis reveal increased bacterial ingestion following Bmal1 deletion, which was also seen in vitro. BMAL1−/− macrophages exhibited marked differences in actin cytoskeletal organization, a phosphoproteome enriched for cytoskeletal changes, with reduced phosphocofilin and increased active RhoA. Further analysis of the BMAL1−/− macrophages identified altered cell morphology and increased motility. Mechanistically, BMAL1 regulated a network of cell movement genes, 148 of which were within 100 kb of high-confidence BMAL1 binding sites. Links to RhoA function were identified, with 29 genes impacting RhoA expression or activation. RhoA inhibition restored the phagocytic phenotype to that seen in control macrophages. In summary, we identify a surprising gain of antibacterial function due to loss of BMAL1 in macrophages, associated with a RhoA-dependent cytoskeletal change, an increase in cell motility, and gain of phagocytic function

    The histone methyltransferase Ezh2 restrains macrophage inflammatory responses

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-02-16, rev-recd 2021-07-06, accepted 2021-07-23, pub-electronic 2021-08-31, pub-print 2021-10Article version: VoRPublication status: PublishedFunder: Medical Research Council Canada (MRC); Id: http://dx.doi.org/10.13039/501100007155; Grant(s): MR/N002024/1Funder: RCUK | Medical Research Council (MRC); Id: http://dx.doi.org/10.13039/501100000265; Grant(s): MRNO2995X/1Funder: Wellcome Trust (Wellcome); Id: http://dx.doi.org/10.13039/100010269; Grant(s): 107849/Z/15/Z, 107851/Z/15/ZFunder: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/L000954/1, BB/K003097/1Abstract: Robust inflammatory responses are critical to survival following respiratory infection, with current attention focused on the clinical consequences of the Coronavirus pandemic. Epigenetic factors are increasingly recognized as important determinants of immune responses, and EZH2 is a prominent target due to the availability of highly specific and efficacious antagonists. However, very little is known about the role of EZH2 in the myeloid lineage. Here, we show EZH2 acts in macrophages to limit inflammatory responses to activation, and in neutrophils for chemotaxis. Selective genetic deletion in macrophages results in a remarkable gain in protection from infection with the prevalent lung pathogen, pneumococcus. In contrast, neutrophils lacking EZH2 showed impaired mobility in response to chemotactic signals, and resulted in increased susceptibility to pneumococcus. In summary, EZH2 shows complex, and divergent roles in different myeloid lineages, likely contributing to the earlier conflicting reports. Compounds targeting EZH2 are likely to impair mucosal immunity; however, they may prove useful for conditions driven by pulmonary neutrophil influx, such as adult respiratory distress syndrome

    The circadian clock protein REVERBα inhibits pulmonary fibrosis development

    Get PDF
    Pulmonary inflammatory responses lie under circadian control; however, the importance of circadian mechanisms in the underlying fibrotic phenotype is not understood. Here, we identify a striking change to these mechanisms resulting in a gain of amplitude and lack of synchrony within pulmonary fibrotic tissue. These changes result from an infiltration of mesenchymal cells, an important cell type in the pathogenesis of pulmonary fibrosis. Mutation of the core clock protein REVERBα in these cells exacerbated the development of bleomycin-induced fibrosis, whereas mutation of REVERBα in club or myeloid cells had no effect on the bleomycin phenotype. Knockdown of REVERBα revealed regulation of the little-understood transcription factor TBPL1. Both REVERBα and TBPL1 altered integrinβ1 focal-adhesion formation, resulting in increased myofibroblast activation. The translational importance of our findings was established through analysis of 2 human cohorts. In the UK Biobank, circadian strain markers (sleep length, chronotype, and shift work) are associated with pulmonary fibrosis, making them risk factors. In a separate cohort, REVERBα expression was increased in human idiopathic pulmonary fibrosis (IPF) lung tissue. Pharmacological targeting of REVERBα inhibited myofibroblast activation in IPF fibroblasts and collagen secretion in organotypic cultures from IPF patients, thus suggesting that targeting of REVERBα could be a viable therapeutic approach

    Evaluation of serum markers in the LRF CLL4 trial: β2-microglobulin but not serum free light chains, is an independent marker of overall survival.

    Get PDF
    Chronic lymphocytic leukemia (CLL) is characterized by heterogeneous clinical behavior and there is a need for improved biomarkers. The current study evaluated the prognostic significance of serum free light chains (sFLC, kappa, and lambda) and other serum markers (bar, serum thymidine kinase (sTK), soluble CD23, and LDH) together with established biomarkers in 289 patients enrolled into the LRF CLL4 trial. In a multivariable analysis of serum markers alone, higher big and kappa light chains were statistically significant in predicting disease progression and higher blg, and sTK in predicting mortality. In multivariable analysis for overall survival the following were independently significant: β2M levels, immunoglobulin gene (IGHV) mutational status (>98% homology), age, 17p13 deletions (>10%), and CD38 expression. β2M is the only serum marker that retained clear independent value as a biomarker in the LRF CLL4 trial and remains powerfully prognostic requiring evaluation in any future method of risk stratifying patients

    REVERBa couples the circadian clock to hepatic glucocorticoid action.

    Get PDF
    The glucocorticoid receptor (GR) is a major drug target in inflammatory disease. However, chronic glucocorticoid (GC) treatment leads to disordered energy metabolism, including increased weight gain, adiposity, and hepatosteatosis - all programs modulated by the circadian clock. We demonstrated that while antiinflammatory GC actions were maintained irrespective of dosing time, the liver was significantly more GC sensitive during the day. Temporal segregation of GC action was underpinned by a physical interaction of GR with the circadian transcription factor REVERBa and co-binding with liver-specific hepatocyte nuclear transcription factors (HNFs) on chromatin. REVERBa promoted efficient GR recruitment to chromatin during the day, acting in part by maintaining histone acetylation, with REVERBa-dependent GC responses providing segregation of carbohydrate and lipid metabolism. Importantly, deletion of Reverba inverted circadian liver GC sensitivity and protected mice from hepatosteatosis induced by chronic GC administration. Our results reveal a mechanism by which the circadian clock acts through REVERBa in liver on elements bound by HNF4A/HNF6 to direct GR action on energy metabolism

    Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Get PDF
    Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd
    corecore