1,023 research outputs found

    A rule-based kinetic model of RNA polymerase II C-terminal domain phosphorylation

    Get PDF
    The complexity ofmany RNA processing pathways is such that a conventional systemsmodelling approach is inadequate to represent all themolecular species involved. We demonstrate that rule-based modelling permits a detailed model of a complex RNA signalling pathway to be defined. Phosphorylation of the RNApolymerase II (RNAPII)C-terminal domain (CTD; a flexible tail-like extension of the largest subunit) couples pre-messenger RNA capping, splicing and 30 end maturation to transcriptional elongation and termination, and plays a central role in integrating these processes. The phosphorylation states of the serine residues of many heptapeptide repeats of the CTD alter along the coding region of genes as a function of distance from the promoter. From a mechanistic perspective, both the changes in phosphorylation and the location atwhich they take place on the genes are a function of the time spent byRNAPII in elongation as this interval provides the opportunity for the kinases and phosphatases to interactwith theCTD.On this basis,we synthesize the available data to create a kinetic model of the action of the known kinases and phosphatases to resolve the phosphorylation pathways and their kinetics.</p

    Non-Geometric Fluxes, Quasi-Hopf Twist Deformations and Nonassociative Quantum Mechanics

    Get PDF
    We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.Comment: 38 pages; v2: typos corrected, reference added; v3: typos corrected, comments about cyclicity added in section 4.2, references updated; Final version to be published in Journal of Mathematical Physic

    The Genomics of Colorectal Cancer: State of the Art

    Get PDF
    The concept of the adenoma-carcinoma sequence, as first espoused by Morson et al. whereby the development of colorectal cancer is dependent on a stepwise progression from adenomatous polyp to carcinoma is well documented

    Three forms of physical measurement and their computability

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast

    Get PDF
    The functional consequences of alternative splicing on altering the transcription rate have been the subject of intensive study in mammalian cells but less is known about effects of splicing on changing the transcription rate in yeast. We present several lines of evidence showing that slow RNA polymerase II elongation increases both cotranscriptional splicing and splicing efficiency and that faster elongation reduces cotranscriptional splicing and splicing efficiency in budding yeast, suggesting that splicing is more efficient when cotranscriptional. Moreover, we demonstrate that altering the RNA polymerase II elongation rate in either direction compromises splicing fidelity, and we reveal that splicing fidelity depends largely on intron length together with secondary structure and splice site score. These effects are notably stronger for the highly expressed ribosomal protein coding transcripts. We propose that transcription by RNA polymerase II is tuned to optimize the efficiency and accuracy of ribosomal protein gene expression, while allowing flexibility in splice site choice with the non-ribosomal protein transcripts
    corecore