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We consider computation with real numbers that arise through a process of physical

measurement. We have developed a theory in which physical experiments that measure

quantities can be used as oracles to algorithms and we have begun to classify the

computational power of various forms of experiment using non-uniform complexity

classes. Earlier, in (Beggs, Costa & Tucker 2014), we observed that measurement can be

viewed as a process of comparing a rational number z – a test quantity – with a real

number y – an unknown quantity; each oracle call performs such a comparison.

Experiments can then be classified into three categories, that correspond with being able

to return test results

z < y or z > y or timeout,

z < y or timeout,

z 6= y or timeout.

These categories are called two-sided, threshold and vanishing experiments, respectively.

The iterative process of comparing generates a real number y. The computational power

of two-sided and threshold experiments were analysed in several papers, including

(Beggs, Costa, Loff & Tucker 2008; Beggs, Costa, Loff & Tucker 2009; Beggs, Costa,

Poças & Tucker 2013a; Beggs, Costa & Tucker 2010b; Beggs, Costa & Tucker 2014). In

this paper we attack the subtle problem of measuring physical quantities that vanish in

some experimental conditions (e.g., Brewster’s angle in optics). We analyse in detail a

simple generic vanishing experiment for measuring mass and develop general techniques

based on parallel experiments, statistical analysis and timing notions that enable us to

prove lower and upper bounds for its computational power in different variants. We end

with a comparison of various results for all three forms of experiments and suitable

postulate for computation involving analogue inputs that breaks the Church-Turing

barrier.
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1. Introduction

Computation theory is about data, algorithms, programs and machines. When the data

are real numbers, our computations operate with approximations: typically, a real number

y that is given as a sequence

z0, z1, z2, . . . , zk, . . .

of rational numbers that are approximations to y. Indeed, the real number y is defined

as an idealisation of a process of rational approximation in the form of an equivalence

class of rational Cauchy sequences. Finite computations with the infinite representations

of y operate with the finite representations of rational numbers z0, z1, z2, . . . , zk, . . . to-

gether with a modulus of convergence.† Our computability theories are not concerned

with where the real numbers come from: the intuitions and abstractions of real number

computation form a world of their own. This is entirely satisfactory if the real number

comes from another computation. However, let us expand this world somewhat by asking

the question:

Suppose a real number y that enters a computation comes from a process of physical

measurement. How can we model this process? What effect does measurement have on

our theory of real number computation?

Whilst logical aspects of measurement have been theorised – see the magnum opus

(Krantz, Suppes, Luce & Tversky 1990) – computable aspects of measurement have been

rather neglected. An early analysis on the computability of physical constants is (Geroch

& Hartle 1986), where an informal attempt at defining measurement can be found. We

are developing a new theory that combines measurement and computation, in a series of

papers that examines a range of experiments and their effects on computation: (Beggs,

Costa, Loff & Tucker 2008; Beggs, Costa, Loff & Tucker 2009; Beggs, Costa & Tucker

2010a; Beggs, Costa & Tucker 2010c; Beggs, Costa & Tucker 2010b; Beggs, Costa &

Tucker 2012b; Beggs, Costa & Tucker 2012a; Beggs, Costa & Tucker 2014). Like Geroche

and Hartle, our study is rooted in physics but it uses a methodology that combines

physical theories with the rich concepts and results of computability and complexity

theory. An abstract study of measurement, tailored to computable analysis, is (Pauly

2009); Pauly uses the representation methods characteristic of the type 2 computability

models – e.g., after (Weihrauch 2000) – to model an interface to the data extracted from

physical behaviour.

In this paper we will be able to reach some preliminary conclusions by solving a

remaining subtle problem, that of measuring physical quantities that vanish in some

experimental conditions.

What is measurement? The essence of any measurement is a comparison: see (Hempel

1952) where comparisons are based on events in the experimental setup. Let the real

number y be the value of the unknown quantity we wish to measure. Then a comparison

is made with a known quantity z; this quantity is a rational number because it describes

the quantity using units of measurement (e.g., 3.75 means 3 whole units and 3
4 of a unit).

† The combination makes the approximation process computable.
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In running an experiment one expects there to be a schedule that allocates reasonable

waiting times. The actual experimental time is likely to be a function f of the difference

between our known quantity and the unknown value, f(|y−z|). This is evidenced by our

study of many experiments and it has become a fundamental assumption in the theory.

In many experiments we expect one of the following values, where timeout indicates that

the experimental time has exceeded the allocated schedule:

z < y or z > y or timeout.

The process can be repeated with a new known quantity z′, which is easily determined by

the previous result. Thus, a sequence of measurements can be generated that approximate

y. We have studied many such experiments and call them two-sided experiments because

approximations can be found above or below y.

However, not all experiments are two-sided. In (Beggs, Costa, Poças & Tucker 2013a;

Beggs, Costa, Poças & Tucker 2013b), we studied experiments in which the unknown

quantities were thresholds. In this case, the process produces one of these test results:

z < y or timeout.

We showed how the process can be repeated with a new known quantity z′ determined

by the previous result and a sequence of approximate measurements generated – but the

case is complicated. We call these threshold experiments.

In this paper, we study a third form of experiment in which the unknown quantity

vanishes. In this case the process produces one of these test results:

z 6= y or timeout.

Thus, we know the unknown and known quantities are not equal but we do not know

which is larger. It is harder to see how to repeat the process with a new known quantity

z′, using the result, in order to generate a sequence that measures y. Here we give new

techniques based upon running parallel experiments, statistical analysis and exploiting

timing notions that enable us to generate a sequence and enable us to prove lower and

upper bounds for its computational power in different variants. This done we are able to

compare the various results for all three forms of experiment and draw some conclusions.

Our theory combines measurement and computation by integrating models of experi-

ments with models of computation for the data obtained. At the heart of our theory is

the idea that an experimenter measures a physical quantity by applying an experimental

procedure to equipment and that an experimental procedure is an algorithm of some

kind. We model this idea as follows:

The experimental procedure is modelled as a Turing machine. The equipment is mod-

elled as a physical device whose behaviour is governed by a physical theory. The equipment

is connected to the Turing machine as a physical oracle with a protocol to manage the

interface.

The Turing machine abstracts the experimental procedure, encoding the experimental

actions and data by a program; it also is able to process the data obtained by measure-

ment. Thus, this mathematical approach captures

(i) the measurement process;

(ii) the use the data from measurement in subsequent computations; and, indeed,
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(iii) arbitrary sequences of interactions with equipment.

The protocols that manage the interface between algorithm and experiment are sophisti-

cated, controlling the precision and timings of queries to the oracle. The precision in the

data can be (a) infinite, (b) finite and unbounded, or (c) finite and fixed. The timings

are limited, bounded by a function of the query. Finally, the computational power is

analysed under the complexity constraint of polynomial time and expressed in terms of

nonuniform complexity theory. Since non-uniform complexity seems to be little known,

for convenience, we give a quick summary in Section 3.

The models of a physical systems are based upon some fragment of a physical theory;

these fragments are parameters in all our applications for, in principle, changing the as-

sumptions about a physical model can change the computational properties. This method

of formalising the theory was seen as basic to any theoretical methodology seeking to

explore the relationship between physical systems and computation was described in our

(Beggs and Tucker 2006; Beggs and Tucker 2007a). Martin Ziegler used the idea with

great effect on the longstanding problem of defining a physical Church-Turing Thesis in

(Ziegler 2009).

In this paper, centre stage is taken by the new methods based on analysing experimen-

tal times. We use the measurement of the time to determine the computational power of

a Turing machine using a typical vanishing experiment as an oracle. In the first method,

we perform two experiments in parallel differing in only one parameter, and determine

which experiment finishes first. In the second method we time experiments by means of a

clock. These techniques introduce the problem of precision into our thinking about time.

We can ask: What is the smallest temporal resolution with which we can distinguish the

order of two events? What is the spacing between the ticks of the clock, i.e., the temporal

resolution which will be recorded as a different time on the clock output. The precision

ε in time is not asymptotic – as the precision in the quantity (i.e., ε → 0) – but rather

a tolerance that can be quantified as a function of the query. Thus, here we consider

two types of precision: precision in the time of oracle consultation and precision in the

concept to be measured.‡

In a Type I vanishing experiment two instances E and E′ of an experiment are run

with different values of a parameter (typically with one unknown value and one known

value set by the experimenter). In our main example, this parameter is a mass. The

result returned by the experiment is simply whether experiment E terminates before E′,

whether E′ terminates before E, or otherwise (i.e. neither terminate in the allowed time,

or they are judged to have terminated simultaneously). Time is compared rather than

quantified. The precision of the experiment determines how accurately the actual value

of the parameter used in the experiment corresponds to the data in the query sent by

the Turing machine. The fact that this is a vanishing experiment, rather than two-sided

or threshold, dictates the algorithm.

‡ We have discussed the case of precision of the quantity in several of our earlier papers. Here we note
that the problem of errors in experiments that cannot be made arbitrarily small just by putting more

care and resources into the experiment is tackled by repeating experiments to obtain statistical data,

from which we obtain probabilistic complexity classes.
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Theorem 1. The following are lower and upper bound results for Type I parallel meth-

ods for the three kinds of precision:

1 If a set A is decided in polynomial time by a deterministic oracle Turing machine

coupled with a Type I vanishing quantity experiment of infinite or unbounded finite

precisions, then A ∈ P/poly . If a set A is in P/poly , then A is decided by a deter-

ministic oracle Turing machine coupled with a Type I vanishing quantity experiment

of infinite or unbounded finite precisions.

2 If a set A is decided in polynomial time by an oracle Turing machine coupled with

a vanishing quantity experiment of fixed finite precision, then A ∈ BPP//log?. If a

set A is in BPP//log?, then A is decided in polynomial time by an oracle Turing

machine coupled with a vanishing quantity experiment of fixed finite precision.

Note that, although lower and upper bounds of Type I vanishing experiment coincide

in each case, they are stated separately in order to compare them with the corresponding

statements of Type II vanishing experiment (described below) that do not make lower

and upper bounds to coincide in all the cases considered.

In a Type II vanishing experiment an instance of an experiment is run with a parameter

determined by data in a query from the Turing machine, up to a certain precision. The

query is timed by the system clock, and an answer to the query is returned. The system

clock is taken to be incremented by integers, so the time returned actually states that the

experiment terminated between two ‘ticks’ of the system clock, thus introducing a time

resolution. A priori, we are not concerned with any ‘physical time’ for the experiment,

just the timing of termination measured by the system clock.

Theorem 2. The following are lower and upper bound results for Type II clock methods

for the three kinds of precision:

1 If a set A is decided in polynomial time by a deterministic oracle Turing machine

coupled with a Type II vanishing quantity experiment of infinite precision, then A ∈
P/poly . If a set A is in P/log?, then A is decided by a oracle Turing machine coupled

with a vanishing quantity experiment of infinite precision.

2 If a set A is decided in polynomial time by a deterministic oracle Turing machine

coupled with a Type II vanishing quantity experiment of unbounded finite precision,

then A ∈ P/poly . If a set A is decided in polynomial time by a deterministic oracle

Turing machine coupled with a Type II vanishing quantity experiment of unbounded

finite precision and exponential protocol, then A ∈ BPP//log?. If a set A is in

BPP//log?, then A is decided by a oracle Turing machine coupled with a vanishing

quantity experiment of unbounded finite precision.

3 If a set A is decided by a deterministic oracle Turing machine coupled with a Type

II vanishing quantity experiment of fixed finite precision, then A ∈ BPP//log?. If

a set A is in BPP//log?, then A is decided in polynomial time by a oracle Turing

machine coupled with a vanishing quantity experiment of fixed precision.

Vanishing oracles are new and the methods for two-sided and threshold oracles do not

apply to them – this has led us to discover the use of timing, which raises subtle points

for the theory. The upper bound known so far for the two-sided oracles with non-infinite



Edwin Beggs, José Félix Costa, Diogo Poças & John V Tucker 6

precision is P/poly (except for particular types of two-sided oracles considered in (Beggs,

Costa, Loff & Tucker 2009) and (Beggs, Costa & Tucker 2012a) for which the upper

bounds are P/poly and BPP//log?, respectively). The upper bound known so far for

the threshold oracles with non-infinite precision is BPP//log
2
? (Beggs, Costa, Poças &

Tucker 2013a).

In Section 2 we introduce two vanishing experiments: the measurement of Brewster’s

angle in optics and a special beam balance for mass designed for our theoretical analysis,

which we call the vanishing balance experiment (VBE for short). In Section 3 we define

the relevant non-uniform complexity classes. In Sections 4 and 8, we discuss the operating

protocols between Turing machines and stochastic oracles. In Sections 5, 6 and 7, we will

introduce the VBE machines together with measurement algorithms for the three types

of precision. Finally, for each type of precision, we will characterize the complexity classes

decided by such machines in polynomial time. Lower bounds are proved in Section 10

and upper bounds in the following Section 11.

2. Examples of vanishing quantity experiments

We now present two vanishing quantity experiments and adopt the second for our anal-

ysis. The first optical experiment shows that there are physical scenarios in which an

experiment yields z 6= y without yielding z < y or z > y. The second beam balance

experiment is artificial to some extent, but is a convenient to use in developing the the-

ory: measuring mass by means of a beam balance is the simplest form of experimental

comparison that is not trivial. Furthermore, each of our three types of experiment can

be demonstrated by an adaptation of the beam balance, showing that the beam balance

is a reassuringly primitive experiment, ideal for theory making.

Our methodology for any experiment begins with settling on a fragment of physical

theory sufficient to specify a model of the equipment and its behaviour (Beggs and Tucker

2006; Beggs and Tucker 2007a). However, in our examples there are some simple choices

for the assumptions.

2.1. The Brewster Angle Experiment

The Brewster Angle Experiment is an experiment based on the principles of classical

optics. It was first described as an example of vanishing value experiment in (Beggs,

Costa & Tucker 2010c). The book (Born & Wolf 1964) provides an useful reference for

the experiment that we will now describe. When a plane wave falls on to a boundary

between two homogeneous media, it is split into two: a transmitted wave propagating

into the second medium and a reflected wave propagated back into the first medium.

Figure 1 provides a illustration of this phenomenon.

The experimental apparatus consists of a surface dividing two media, a projector and

a light detector. We can send a light beam into the surface with a certain incidence

angle ϕ. The electric field is perpendicular to the direction of propagation and can be

decomposed into components parallel (subscript ‖) and perpendicular (subscript ⊥) to

the plane of incidence. Let Ei,‖ and Ei,⊥ denote the components of the incident ray, Er,‖



Computations with oracles that measure vanishing quantities 7

and Er,⊥ the components of the reflected ray, and Et,‖ and Et,⊥ the components of the

transmitted ray. Let ϕ be the angle of incidence and ψ be the angle of transmission.

From optics we can deduce several relations between the components of the electric field,

called Fresnel formulas:

Et,‖ =
2 sinψ cosϕ

sin(ϕ+ ψ) cos(ϕ− ψ)
Ei,‖, Et,⊥ =

2 sinϕ cosψ

sin(ϕ+ ψ)
Ei,⊥ ,

Er,‖ =
tan(ϕ− ψ)

tan(ϕ+ ψ)
Ei,‖, Er,⊥ = − sin(ϕ− ψ)

sin(ϕ+ ψ)
Ei,⊥ .

Brewster’s law states that for some value of the angle of incidence, the reflected light

is totally polarized in the direction normal to the plane of incidence. From the Fresnel

formulae we see that it occurs when ϕ + ψ = π
2 , so that Er,‖ = 0. Our objective is to

measure the Brewster angle ϕB . For the sake of simplicity we assume some scale such

that 0 < ϕB < 1. In this type of experiment, we cannot infer any information about the

Brewster angle simply by sending a ray with desired angle ψ. The reason is that, as ϕ

approaches ϕB , the intensity of the electric field decreases to 0, either if ϕ < ϕB or if

ϕ > ϕB .

(incident ray) (reflected ray)

(transmitted ray)

medium (1)

medium (2)

O
X

Z

~Ei,⊥ ~Er,⊥

~Et,⊥

ϕ

ψ

~Ei,‖ ~Er,‖

~Et,‖

Figure 1. Elements of incident, reflected, and transmitted light rays. The indexes of the

electrical field E denote the incident, i , reflected, r , and transmitted, t , rays, together with the

normal, n, and the parallel, p, components of the field. The black circle denotes the normal

component pointing forward and the white circle denotes the normal component pointing

backwards.

Consider that an instance of the experiment begins by sending a light beam, polarized

in the horizontal direction, with angle incidence ϕ so that Ei,⊥ = 0, so that the re-

flected ray is also polarized. Furthermore, as ϕ approaches ϕB , the reflected ray vanishes

completely. Denote by Hr the magnetic field produced by the reflected ray. We know

that Hr is perpendicular to Er and to the direction of propagation of the reflected ray;

this implies that Hr = Hr,⊥. Furthermore we have the following relation between the

amplitudes of the magnetic field and of the electric field: Hr = ncε0Er, where n is the

index of refraction of the first medium, c is the speed of light in the vacuum and ε0 is the
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vacuum permitivity. We assume the existence of a light detector on the reflection side

that absorbs the energy of the reflected ray. This detector can be a photovoltaic detec-

tor that reacts when it has absorbed energy above a threshold limit Ω. The directional

energy flux of the reflected ray is then given by the Poynting vector, Sr = Er ×Hr with

the average magnitude of 〈S〉 = ncε0E
2
r/2. Finally, let α be the cross-section area of the

light beam. The time Texp taken for the light detector to absorb the threshold energy is

given by

Texp =
Ω

α〈S〉
=

2Ω

nαcε0Er
2 .

Even though the above expression seems very detailed, the important point is that the

experimental time is proportional to the inverse of the square of the electric field of the

reflected ray. Thus we get the following experimental time, Texp, given in some abstract

units,

Texp(z, ψ) =
tan(ϕ+ ψ)2

tan(ϕ− ψ)2
.

Reviewing the assumptions we have made, we have made an easy application of the

classical rules of optics. If we were to replace classical by quantum optics, we would have

the more subtle matter of having the expected time to detecting a certain number of

photons of a given frequency.

2.2. The Vanishing Balance Experiment (VBE)

The following experiment (depicted in Figure 2) is a variation of the balance scale for

mass. The balance has two pans with a pressure stick below each pan. On the right pan

there is a body with the unknown mass of size y. To measure y we place a test mass z

on the left pan. If z = y, then the scale will not move since the lever is in equilibrium.

But, if z 6= y, then one of the pans will move down and sooner or later it will press one

of the pressure sticks. However, when z 6= y, there is no information about which of the

pans sank, only that one of them did.

z y
O

Figure 2. Schematic depiction of the vanishing balance experiment.

There are also other assumptions that can be made explicit about the experiment:

(a) y is a real number in [0, 1]; (b) the mass z can be set to any dyadic rational in the

interval [0, 1]; (c) a pressure-sensitive stick is placed below each side of the balance, such

that, when one of the pans touches the pressure-sensitive stick, it reacts producing a

signal; (d) the mass z can be set so that the procedure starts from absolute rest; (e) the

friction between the masses and the pans is large enough so that these will not slide

away from their original position once the scale is in motion; and (f) the bar on which

the masses are placed is made of an homogeneous material, so that the two pans have

exactly the same weight. Assuming that the test mass weighs z and the unknown mass
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weighs y, the cost of the experiment, Texp(z, y), which is the time taken for one of the

pans to touch the pressure stick, in some abstract units of time, is given by:

Texp(z, y) =

√
z + y

|z − y|
. (1)

This expression for the time, which exhibits an exponential growth on the precision of z

with respect to the unknown y, is typical in physical experiments, regardless the concept

being measured.

Reviewing our assumptions again, we have used the standard theory of mechanics

of rigid bodies. This means that we have neglected molecular effects, such as Coulomb

adhesion-friction, which would alter the behaviour of the system. However the purpose

of using this balance experiment is to have a generic example of a vanishing experiment,

just as in other places we had generic examples of threshold and two-sided experiments.

Note as y → z we are taking a limit of a theory of physics, and in practice another

theory may intervene, e.g., quantum mechanics. However, the case for introducing quan-

tum theory might be regarded as similar to that of imposing a general relativistic limit

on the size of a Turing machine!

3. Physical oracles and their computational power

3.1. Turing machines and physical oracles

In computability theory, after Turing and Post, an oracle for a Turing machine is accessed

by the Turing machine, which answers queries from a query tape about the membership

of elements of a set; the responses take one time step, and have no error.

A physical oracle answers queries from a query tape about the behaviour of a physical

process. In contrast to a set-theoretic oracle, it may take a variable amount of time

to answer a query – if indeed it does – and may give error prone results. The Turing

machine is connected to physical reality via a protocol. To prevent problems like the

Turing machine waiting an arbitrarily long time for a response to a query, the protocol’s

will impose a limit on waiting times.

The combination of the Turing machine and physical oracle may be thought of as

having two possible functions. First, as in computability theory, information from the

physical oracle – physical observations – may be used to boost the computational power

of the Turing machine. Secondly, an innovation, the Turing machine may be used to

control some aspect of reality, such as directing a sequence of steps in an experiment or

controlling a hybrid system. In this paper we will be concerned with the first function.

The architecture is illustrated in the diagram of Figure 3.

Consider a Turing machine running a program that queries a physical oracle via a

protocol or interface. What does the Turing machine (or its programmer) actually know?

The physical experiment itself is beyond its knowledge, it only sees queries and replies. To

study what such an augmented Turing machine can compute, we can give an axiomatic

specification of the physical oracle, which involves a segment of physical theory and a

specification of the particular physical system that serves as the oracle.

The mathematical details of construction and operation of a Turing machine with a
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physical oracle, and the key notions of precision, waiting times, timeouts etc., can be

found in the early papers of our series such as (Beggs, Costa, Loff & Tucker 2008; Beggs,

Costa, Loff & Tucker 2009; Beggs, Costa & Tucker 2012b).

One way of studying what a Turing machine with physical oracle can compute in a

given time is to use non-uniform complexity theory.

Turing
Machine

Protocol
or

Interface

Physical
experiment

Controls experiment

Boosts computation

Figure 3.

3.2. Physical oracles and non-uniform complexity classes

We consider the classical word acceptance problem for a Turing machine, but incorpo-

rating advice functions: we refer to (Balcázar, Dı́as & Gabarró 1995) for advice and

non-uniform complexity, only saying what is required for understanding the this paper.

By an advice function we mean any total map f : N → Σ∗, the finite words in an

alphabet Σ; in our case, Σ is just the binary alphabet {0, 1}. The pairing function is

the well known map 〈−,−〉 : Σ∗ × Σ∗ → Σ∗, computable in linear time, that allows us

to encode two words in a single word over the same alphabet by duplicating bits and

inserting a separation symbol “01”.

The definition of non-uniform complexity class follows:

Definition 3. Let B be a class of sets and F be a class of advice functions. Define the

class B/F as the class of sets A such that there exists a set B ∈ B and an advice f ∈ F
such that, for every word x ∈ Σ∗, x ∈ A if, and only if, 〈x, f(|x|)〉 ∈ B.

Take the class B to be the class P of sets decidable by Turing machines in polynomial

time. Now we have to choose the class of advice functions F . Note that the advice

functions are not, in general, computable but the bounds on length are computable; e.g.,

in the advice class poly, any advice function f : N → Σ∗ is bounded by a (computable)

polynomial p such that, for all n ∈ N, |f(n)| ≤ p(n). Thus, we define P/poly and,

similarly, P/log with the advice class log.

Note that if exp is the set of advice functions bounded in size by functions in the class

2O(n), then P/exp contains all sets. However, even a much smaller choice of F allows

classically non-computable results: The Halting Set

H = {0n : Turing machine with code n halts on 0 }
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is in P/log? ⊂ P/poly .

A prefix non-uniform complexity class uses only prefix advice functions functions, i.e.,

functions f such that f(n) is always a prefix of f(n + 1). The idea behind prefix non-

uniform complexity classes is that the advice given for inputs of size n may also be used

to decide smaller inputs.

Definition 4. Let B be a class of sets and F a class of advice functions. The prefix

advice class B/F? is the class of sets A for which some B ∈ B and some prefix function

f ∈ F are such that, for every length n and input w, with |w| ≤ n, w ∈ A if, and only if,

〈w, f(n)〉 ∈ B.

For probabilistic complexity classes we use the basic class BPP , which is word accep-

tance problems solvable with bounded error probability in polynomial time by a Turing

machine with access to a fair independent coin toss oracle (this might itself be consid-

ered as a form of physical oracle). Here bounded error probability means that there is a

number γ < 1
2 , such that the error probability of a Turing machine for any input w is

smaller than γ.

For the probabilistic complexity classes there is a complication in the definition of

BPP/F . Notice that by requiring a set B ∈ BPP and a function f ∈ F such that w ∈ A
if, and only if, 〈w, f(|w|)〉 ∈ B, we are demanding a fixed probability 1

2 + ε, 0 < ε < 1
2

(fixed by the Turing machine chosen to witness that B ∈ BPP) for any possible correct

advice, instead of the more intuitive idea that the error γ = 1
2 −ε only has to be bounded

after choosing the correct advice. This leads to the following definitions for the specific

complexity class BPP using double slash that we will be using throughout this paper:

Definition 5. BPP//poly is the class of sets A for which a probabilistic Turing machine

M clocked in polynomial time, a function f ∈ poly, and a constant 0 < γ < 1
2 exist such

that M rejects 〈w, f(|w|)〉 with probability at most γ if w ∈ A and accepts 〈w, f(|w|)〉
with probability at most γ if w /∈ A.

Definition 6. BPP//log? is the class of sets B for which a prefix advice function f ∈ log,

a probabilistic Turing machineM and a constant γ < 1/2 exist such that, for every word

w with size less or equal to n,M rejects 〈w, f(|w|)〉 with probability at most γ if w ∈ B
and accepts 〈w, f(|w|)〉 with probability at most γ if w /∈ B.

It is known that BPP//poly = BPP/poly , but it is not known whether BPP//log? ⊆
BPP/log?.

4. Protocols and the vanishing balance experiment

How do we make the connection between the digital computer (modeled as a Turing

machine) and the analog device (modeled as an oracle)? The arguments so far developed

– such as in (Beggs, Costa, Loff & Tucker 2008; Beggs, Costa & Tucker 2010b; Beggs,

Costa & Tucker 2010c; Beggs, Costa & Tucker 2012b) – do not differ substantially from

the classical analog-digital protocol that we can find in books on hybrid computation,

e.g. (Bekey & Karplus 1968).
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The main device for the transference of data from the digital component to the analog

component is a query tape. However, we have been working in a situation where the analog

oracle device furnishes to the digital computer two bits of information: yes/first/left,

no/second/right, timeout, and possibly indistinguishable. This is a restriction to

the general analog-digital converter (as in (Bekey & Karplus 1968)), but it makes our

theory closer to the realizability of hybrid machines: an answer tape is not needed and

the result of the consultation of the oracle is encoded immediately after in the resulting

state of the Turing machine.

The protocols that we will adopt for the vanishing experiments will be different from

the protocols considered in previous papers. It seems that performing one instance of

the experiment does not give much information about the relationship between the test

mass z and the unknown mass y. §

We have to consider two instances of the experiment instead of one, with two differ-

ent dyadic rationals, z1 and z2 and their respective experimental times Texp(z1, y) and

Texp(z2, y). Now suppose that we can determine which of the instances of the experiment

ends first. That is, suppose that, for any two dyadic rationals, we can determine whether

Texp(z1, y) < Texp(z2, y), Texp(z1, y) = Texp(z2, y), or Texp(z1, y) > Texp(z2, y). Then we

could also determine, for a finite increasing sequence z1 < z2 < . . . < zn, which of the zi
corresponds to the instance that ends last. This would then imply something about y,

thanks to the simple fact that y should be closer to dyadic rationals that consume more

experimental time. This conclusion is a consequence of the fact that Texp is increasing in

the interval [0, y) and decreasing in the interval (y, 1]. Now we ponder on the assumption

we made: given two dyadic rationals z1 and z2, corresponding to different instances of

the experiment, how can we determine which of the instances ends last? There are two

possible implementations of the experiment that can answer the question:

— To perform two experiments simultaneously, that is, to use two copies of the balance

with the same unknown mass y in the right pan. We can place masses z1 and z2
at the left pans of the balances and start both experiments at the same time. If

Texp(z1, y) < Texp(z2, y), then the experiment with test mass z1 sends a first signal

and if Texp(z1, y) > Texp(z2, y), then the experiment with test mass z1 calls back first.

— Suppose we only have one balance, but now we can count the machine steps during

an experiment until the end. In this way we can begin by performing an instance of

the experiment for test mass z1, and counting the number T1 of machine transitions

that the experiment takes. Then repeat the experiment for test mass z2, obtaining a

number T2 of machine transitions. Finally, compare T1 and T2. If T1 < T2, then we

conclude that Texp(z1) < Texp(z2); if T1 > T2, then Texp(z1) > Texp(z2).

The first solution overlooks a simple practical aspect. We are basically attempting to

§ When we were studying two-sided experiments in, say, (Beggs, Costa & Tucker 2012a) we saw that
result “left” would imply that z < y and result “right” would imply that z > y. Also, when we

were studying threshold experiments in (Beggs, Costa, Poças & Tucker 2013a; Beggs, Costa, Poças &
Tucker 2013b) we saw that result “yes” would imply that z > y. But now, with vanishing experiments,

we only have result “yes” and this only implies that z 6= y. Of course, “timeout” should occur very

rarely, and may even not occur at all for some choices of unknown mass and time schedule.
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decide which of two events occurs first, but can we actually do it if the difference in

times becomes very small? We could answer this question in the negative, and argue

that there is a minimum time gap below which two events may appear simultaneous, so

that we cannot tell which of them happens first. The second solution also introduces a

problem. First recall that we should set a bound on the time that we consider acceptable

to wait for a response, the time schedule concept. If the experimental time exceeds the

time schedule, then the count of steps and the experiment should be interrupted. This

means that, when performing two instances of the experiment, any of them may result

in a timeout. If one experiment times out and the other does not, we can still decide

which of them ends first; nothing can be said when both experiments time out. However

it is not a great deal to solve this problem, since we can in principle increase the time

schedule (padding the query z with 0s) until one of the experiments ends. There is another

subtler situation in which we cannot decide which of the instances takes more time, if

the number of machine transitions is the same, that is, when T1 = T2. In this situation

the two instances are indistinguishable. Increasing the time schedule will not help, nor

will do padding 0s.

We shall use these assumptions:

— In the first implementation, we assume that we can in fact distinguish the two events

from one another. (This is, as we said, not feasible, but we are willing to consider it

because it will provide us with some interesting results later on.) In this way, when

we perform two instances of the experiment, there are three possible results: the first

instance ends first; the second instance ends first; or both instances time out;

— In the second implementation, we assume that it is possible for two experiments

to consume the same number of machine steps. In this way, when we perform two

instances of the experiment, there are four possible results: the first instance ends

first; the second instance ends first; both instances time out; or we could not decide

which instance ends first (although none of them times out).

Protocol “compare[1, IP ](z1, z2)”

“Mass”: Infinite precision case

Receive as input the binary description of two dyadic rationals z1 and z2 of size n

(possibly padded with 0s);
Place a mass z1 in the left pan of the first balance;

Place a mass z2 in the left pan of the second balance;

Start both experiments at the same time;
wait T (n) units of time;
Check which pressure stick have sent a signal first:

if the first balance calls back first then return “first”;
if the second balance calls back first then return “second”;

if neither instance calls back, then return “timeout”.

Figure 4. Procedure that describes the VBE with the first implementation and infinite

precision, for some unknown mass of size y and some time schedule T .
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We must also take into account the imprecision associated with placing a test mass in

the left pan. We do this in the same way as we have done in the previous papers (e.g.

(Beggs, Costa, Loff & Tucker 2008; Beggs, Costa & Tucker 2012a)), by considering three

types of precision:

(a) infinite precision (see Figures 4 and 5): when the dyadic z is read in the query

tape, a test mass z is simultaneously placed in the left pan,

(b) unbounded precision (see Figures 4 and 5): when the dyadic z is read in the query tape,

a test mass z′ is simultaneously placed in the left pan such that z−2−|z| ≤ z′ ≤ z+2−|z|

and

(c) fixed precision ε > 0 (to be discussed later on): when the dyadic z is read in the query

tape, a test mass z′ is simultaneously placed in the left pan such that z− ε ≤ z′ ≤ z+ ε.

Protocol “compare[2, IP, g](z1, z2)”

“Mass”: Infinite precision case

Receive as input the description of two dyadic rationals z1 and z2 of size n

(possibly padded with 0s);
Place a mass z1 in the left pan;

wait T (n) units of time, while

counting the number of steps before receiving a signal from a pressure stick, T1;
if the experiment does not call back, then set T1 := T (n) + 1;

Place a mass z2 in the left pan;

wait T (n) units of time,
while counting the number of steps before receiving a signal from a pressure stick, T2;

if the experiment does not call back, set T2 := T (n) + 1;

Compare T1 and T2:
if T1 < T2, then return “first”;

if T1 > T2, then return “second”;
if T1 = T2 > T (n), then return “timeout”.

if T1 = T2 ≤ T (n), then return “indistinguishable”.

Figure 5. Procedure that describes the VBE with the second implementation and infinite

precision, for some unknown mass of size y and some time schedule T .

In the second implementation, there is also a different notion of imprecision, that

appears when we count the number of machine transitions while the oracle is being con-

sulted. We are making also the assumption that all machine transitions take the same

amount of physical time. (Note that we really only require an order preserving 1-1 cor-

respondence between physical and experimental time.) However, this is not necessarily

true. This means that, when we count T1 machine transitions, the actual time taken for

the experiment may not be in (T1 − 1, T1]. To formalize this consideration, we define a

new kind of imprecision, now related with time:

(d) time precision g, given a map g : N → N: when an experiment settled for the

query word z takes an amount of time t, the number of machine transitions counted is

T1, where T1 is a natural number uniformly sampled in [dte − g(|z|), dte+ g(|z|)].
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Good examples for g are the following: g(n) = 0, i.e., full precision and we get back

the assumption that all machine transitions take the same amount of time; g(n) = c, i.e.,

constant time precision; g(n) = cnk, i.e., polynomial time precision; and g(n) = c2kn,

i.e., exponential time precision.

A first look at the protocol of Figure ?? may induce the reader to believe that the

vanishing experiment can be in some way reduced to experiments analysed in previous

papers such like the mass experiment in (Beggs, Costa & Tucker 2010b), or the scatter

experiment in (Beggs, Costa & Tucker 2010c). However, that it is not so, since although

the scheduling procedure is the same, in the vanishing experiment of first type we are

considering that event order is performed with infinite precision (in time), activity that

constitutes the sole resource of the vanishing apparatus.

Thus, we have to consider six different types of protocols, three for the first imple-

mentation and three for the second implementation. However, there are more than six

possible protocols; observe that, after choosing the implementation and the concept pre-

cision, there is still a lot of different possible choices for the function g abstracting the

time precision. There will be many similarities between the six types of protocols, so we

start by defining the protocols for the first implementation with infinite precision and for

the second implementation with full precision.

To obtain alternative protocols for the first implementation, simply reinterpret the

instructions in Figure 4, depending on whether you are considering unbounded precision

or fixed precision ε. In the first case, we place the masses z′1 and z′2 in the left pans where

z′1 ∈ (z1−2|z1|, z1+2|z1|) and z′2 ∈ (z2−2|z2|, z2+2|z2|); in the second case, we consider z′1 ∈
(z1−ε, z1+ε) and z′2 ∈ (z2−ε, z2+ε). In this way we obtain protocols compare[1, UP ] and

compare[1, FP (ε)]. To obtain alternate protocols for the second implementation, simply

reinterpret the instructions of the second protocol in Figure 5, depending on whether you

are considering unbounded precision or fixed precision ε. In the first case, we place the

masses z′1 and z′2 in the left pans, where z′1 ∈ (z1−2|z1|, z1+2|z1|) and z′2 ∈ (z2−2|z2|, z2+

2|z2|); in the second case, we considerz′1 ∈ (z1 − ε, z1 + ε) and z′2 ∈ (z2 − ε, z2 + ε). In

this way we obtain protocols compare[2, UP, g] and compare[2, FP (ε), g]. Finally, the

protocols for the second implementation and different choices of time precision do not

differ, since the precision is implicitly present in counting machine transitions.

Reviewing the assumption of uniform probability densities above, we could generalise

them to some other computable probability distribution, most obviously the Gaussian

distribution. However, the uniform distribution produces simpler arguments, making the

exposition clearer, and avoids the problem of estimating the time taken to compute with

another distribution.

5. Measuring with the VBE machine with infinite precision

In what follows the suffix operation �n on a word w, w�n, denotes the prefix sized n of

the ω-word w0ω, no matter the size of w.

Comparing the experimental times relative to two different query words provides infor-

mation about y. Consider calls with protocol compare[1, IP ] for input (z1, z2) such that
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z1 < z2 and assume that no timeout occurs. The result of the experiment depends only

on the relationship between z1, z2 and y: (a) if y < z1 < z2, then the second experiment

will end first, (b) if z1 < y < z2, then any of the two experiments can end first, and (c) if

z1 < z2 < y, then the first experiment will end first. We can then deduce the relationship

between z1, z2 and y.

Proposition 7. Let s be the result of compare[1, IP ](z1, z2), for an unknown mass

of size y and time schedule T , such that |z1| = |z2| = n and z1 < z2. Then, (a) if

s =“first”, then y > z1, (b) if s =“second”, then y < z2, and (c) if s =“timeout”,

then |y − z1| < 2T (|n|)−2 and |y − z2| < 2T (|n|)−2.

The idea for the measurement is the following: suppose that y lies in the interval [z0, z4],

where z0 and z4 are dyadic rationals. Split the interval in four parts by considering the

points z1, z2, and z3 where z2 = (z0 + z4)/2, z1 = (z0 + z2)/2 and z3 = (z2 + z4)/2.

Consider protocol calls for the pairs (z1, z2) and (z2, z3) with experimental times t1, t2
and t3. Depending on the result we will obtain a new interval where y may belong: (a) if

t1 > t2 (i.e., the first protocol call returns “second”), then y < z2 and thus y ∈ [z0, z2],

(b) if t2 < t3 (that is, the second protocol call returns “first”), then y > z2 and thus

y ∈ [z2, z4], (c) if t1 < t2 and t2 > t3 (that is, the first protocol call returns “first” and

the second protocol call returns “second”), then z1 < y < z3 and thus y ∈ [z1, z3]. Note

that the new interval has half the length of the original one and so repeating this process

will enable us to obtain approximations to y.

Algorithm “BinarySearch[1, IP ](`)”

“Mass”: Infinite precision case

input a natural number ` – number of places to the right of the left leading 0;

x0 := 0; x4 := 1; x2 := (x0 + x4)/2;
while x4 − x0 > 2−` do begin

x1 := (x0 + x2)/2;

x3 := (x2 + x4)/2;
s1 := compare[1, IP ](x1�`, x2�`);
s2 := compare[1, IP ](x2�`, x3�`);
if s1 = “second” then (x0, x2, x4) := (x0, x1, x2);
else if s2 = “first” then (x0, x2, x4) := (x2, x3, x4);

else if s1 = “first” and s2 = “second” then (x0, x2, x4) := (x1, x2, x3);

else if s1 = “timeout” or s2 = “timeout” then x0 := x2; x4 := x2
end while;

output the dyadic rational denoted by x2.

Figure 6. Procedure to obtain an approximation of an unknown mass of size y placed in the

right pan of the balance.

Proposition 8. For any unknown mass of size y and any time schedule T , (a) the time

complexity of the algorithm of Figure 6, for input `, is O(`T (`)), (b) for all k ∈ N, there

exists ` ∈ N such that T (`) ≥ 2(k+1)/2 and the output relative to the input ` is a dyadic

rational m such that |y −m| < 2−k, moreover, ` is at most exponential in k, and (c) if
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T (k) is exponential in k, then the value of ` witnessing T (`) ≥ 2(k+1)/2 can be taken to

be linear in k.

Proposition 9. For any real number y ∈ (0, 1), the VBE machineM(y) operating with

the type I protocol with infinite precision and exponential schedule is such that: (a) for

all size n ∈ N, M(y) halts for the input word 1n and the content of the output tape

is a dyadic rational z such that |z − y| < 2−n and (b) the number of steps of M(y) is

bounded by an exponential in n.

Proof: For any y ∈ (0, 1), we take the VBE machine M(y) with unknown mass y and

any exponential time schedule T , operating with type I protocol with infinite precision.

According to Proposition 8 (b) and (c), there is a constant b such that, for all n, with

` = bn, we have that T (`) ≥ 2(n+1)/2. The machine M(y), on input 1n, just calls the

binary search procedure of Figure 6 with input ` = bn. Since T (n) is exponential in n

and ` is linear in n, the number of steps of the VBE machine, also in agreement with

Proposition 8 (a), is in O(`2a`) ⊆ O(2(a+1)`), for some a ∈ N. �
The next step is to provide a measurement algorithm for the type II protocol. We

will try to adapt the same algorithm, but now we have to deal with the possibility of

getting “indistinguishable”, meaning that both experimental times are too close to

separate them. To solve this problem, we compute the time differences as we approach the

unknown mass y. It would be interesting if the time differences of a protocol call increase,

i.e., if on successive calls to compare[2, IP, g](z1, z2) the experimental time differences

would become greater. That would mean that the answer “indistinguishable” would

not occur (after some point on) and so we could deduce the position of y relative to z1
and z2. Fortunately, this is indeed true if both test masses lie on the same side relative

to y.

Proposition 10. Consider an instance of the VBE with unknown mass of size y and test

masses z1, z2. Suppose that either y < z1, z2 or z1, z2 < y, that |z2− z1| ≥ δ, |z1− y| ≤ ζ
and |z2 − y| ≤ ζ. Then |Texp(z2, y)− Texp(z1, y)| ≥ aδ/(ζ

√
ζ), where a = y/

√
1 + y.

Proof: The experimental time and its derivative are given by

Texp(z, y) =

√
z + y

|z − y|
|T ′exp(z, y)| = y

√
z + y

√
|z − y|3

.

To get the desired inequality, we just apply the mean value theorem and the assumption

|z1 − z2| ≥ δ. We conclude that there is some value ξ between z1 and z2 such that

|Texp(z2, y)− Texp(z1, y)| = |z2 − z1||T ′exp(ξ, y)| ≥ yδ
√
ξ + y

√
|ξ − y|3

≥ y√
1 + y

δ

ζ
√
ζ
,

where on the last step we use the facts that ξ < 1 and that |ξ − y| < ζ. �
The measurement algorithm for the type II protocol will be very similar to the one

for the type I. We begin with the interval [0, 1]; at step k, we have an interval of size

2−k containing y; then we split the interval in four intervals, obtaining dyadic rationals

z0, z1, z2, z3, and z4 that are separated by 2−k−2; we perform two protocol calls, one

involving z1 and z2 and the other involving z2 and z3; depending on the answers, we
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choose one of the intervals (z0, z2), (z1, z3) or (z2, z4) as the next interval, thus obtaining

an interval with half of the length of the previous one. To simplify, consider first the

case g = 0. Suppose that y does not belong to (z1, z2). We know that |z1 − z2| = 2−k−2

and that both |z1 − y| and |z2 − y| are at most 2−k. By Proposition 10, we obtain that

the time difference in protocol call compare[2, IP, g](z1, z2) is at least a×2k/2/4, where

a is a constant. In the same way, if y does not belong to (z2, z3), the time difference

in protocol call compare[2, IP, g](z2, z3) is at least a × 2k/2/4. We conclude that the

time difference increase exponentially step by step, which implies that we will not get

“indistinguishable” whenever the two dyadic rationals lie on the same side relative

to y. That is, if the answer to a protocol call compare[2, IP, g](z, z′) with z < z′ is

“indistinguishable”, then z < y < z′. At step k, we make protocol calls with words

of size k + 2. Suppose that y does not lie in (z1, z2), so that the time difference is at

least a × 2k/2/4. If g = 0, then we get an answer of “first” (implying that y > z1),

“second” (implying that y < z2) or “timeout” (implying that y is very close to z1
and z2). We need g to be small enough so that we do not get a wrong answer, that is,

the number of machine transitions must not differ too much from the real experimental

time. Observe that, for any g, the time differences observed (that is, the difference in

the number of machine transitions) is at least a × 2k/2/4 − 2g(k + 2). Thus, if g is

such that g(k) < a × 2k/2/16, then the imprecision in time is not enough to induce a

different answer to the protocol call. Thus, any constant time precision, polynomial time

precision, or exponential time precision g(n) = c2kn with k < 1/2 does not prejudice

our algorithm. Most of these results are asymptotic, i.e., we can only guarantee that, for

a certain point on, the time difference is great enough so that we do not get answers

of “indistinguishable”. However, in the first iterations, it is not impossible to obtain

“indistinguishable” as the answer to compare[2, IP, g](z, z′) in a situation where y

does not belong in (z, z′).

To deal with this problem, note that we could simply begin the measurement with a

subinterval of [0, 1], small enough so that it does not happen. The specification of this

subinterval only requires a finite amount of information (two dyadic rationals of size k,

for k large enough) that only depend on y and g, and thus it could be hard-wired in

the measurement algorithm. Thus, we can in fact build a measurement algorithm for the

second implementation.

Proposition 11. For any unknown mass of size y, any time schedule T and any time

precision g such that g ∈ o(λn× 2n/2), (a) the time complexity of algorithm of Figure 7

for input ` is O(`T (`)), (b) for all k ∈ N, there exists ` ∈ N such that T (`) ≥ 2(k+1)/2

and the output for input ` is a dyadic rational m such that |y−m| < 2−k, moreover ` is

at most exponential in k, (c) if T (k) is exponential in k, then the value of ` witnessing

T (`) ≥ 2k/2 can be taken to be linear in k.

Proposition 12. For any real number y ∈ (0, 1), there exists the VBE machine M(y)

with the type II protocol with infinite precision in the mass and any time precision

g ∈ o(λn. 2n/2) such that: (a) for all size n ∈ N, M(y) halts for input word 1n and the

content of the output tape is a dyadic rational z such that |z − y| < 2−n and (b) the

number of steps of M(y) is bounded by an exponential in n.
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Proof: For any y ∈ (0, 1), we take the VBE machine M(y) with the type II protocol

with infinite precision and any exponential time schedule T . The machine M, on input

1n, just calls the binary search procedure of Figure 7 with input ` = bn. The desired

approximation is produced with probability 1. Since T (n) is exponential in n and ` is

linear in n, the number of steps of the VBE machine, in agreement with Proposition 11

(a), is in O(`2an) ⊆ O(2(a+1)n) for some a ∈ N. �

Algorithm “BinarySearch[2, IP, g]”

“Mass”: Infinite precision case

input a natural number ` — number of places to the right of the left leading 0;
x0 := 0;

x4 := 1;

x2 := (x0 + x1)/2;
while x4 − x0 > 2−` do begin

x1 := (x0 + x2)/2;

x3 := (x2 + x4)/2;
s1 := compare[1, IP ](x1�`+1, x2�`+1);

s2 := compare[1, IP ](x2�`+1, x3�`+1);

if s1 = “second” or “indistinguishable” then (x0, x2, x4) := (x0, x1, x2);
else if s2 = “first” or “indistinguishable” then (x0, x2, x4) := (x2, x3, x4);

else if s1 = “first” and s2 = “second” then (x0, x2, x4) := (x2, x3, x4);

else if s1 = “timeout” or s2 = “timeout” then x0 := x2; x4 := x2
end while;

output the dyadic rational denoted by x2.

Figure 7. Procedure to obtain an approximation of an unknown mass of size y in the right pan

of the balance.

In the end of this section, we offer a different measurement algorithm for the first

implementation. We have seen that it is possible, in polynomial time, to obtain a loga-

rithmic amount of bits of the unknown mass. We will now consider other possibilities for

the measurement. For example, suppose that y > 1/2 and we want to measure the point

z > 1/2 at which Texp(z, y) = Texp(1/2, y). With type I protocol, this is indeed possible,

as the algorithm of Figure 8 suggests.

Proposition 13. Let s be a possible result of compare[1, IP ](1�`,m�`) (note that 1�` is

the `-bits dyadic rational 0.10 · · · 0). For any unknown mass of size y > 1/2, and r > 1/2

denote the point such that Texp(1/2, y) = Texp(r, y). Then, if s =“first”, then r ≥ m,

and, if s =“second”, then r ≤ m.

Proposition 14. For any unknown mass of size 1/2 < y <
√

2/2 and any time schedule

T , let r > 1/2 denote the point such that Texp(1/2, y) = Texp(r, y). Then (a) the time

complexity of algorithm of Figure 8 for input ` is O(`T (`)) and (b) if T (`) > Texp(1/2, y),

then the output for input ` is a dyadic rational m such that |r −m| < 2−`.
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Algorithm “BinarySearch[3, IP ]”

“Mass”: Infinite precision case

input a natural number ` – number of places to the right of the left leading 0;

x0 := 1/2;

x1 := 1;
while x1 − x0 > 2−` do begin

m := (x0 + x1)/2;

s := compare[1, IP ](1�`,m�`);
if s = “first” then x0 = m else x1 = m

end while;
output the dyadic rational denoted by m.

Figure 8. Procedure to obtain an approximation of a real number y, with a test mass z in the

right pan of the balance.

Proposition 15. For any real number y ∈ (1/2,
√

2/2), there exists the VBE machine

M(y) operating on the mass y with type I protocol with infinite precision such that:

(a) for all size n ∈ N, M(y) halts for the input word 1n and the content of the output

tape is a dyadic rational z such that |z − r| < 2−n and (b) the number of steps of M(y)

is bounded by a polynomial in n.

Proof: The map z 7→ z+1
2 is a bijection f : [0, 1]→ [1/2, 1] that works by simply prefixing

a 1 to the binary expansion of the argument z. Suppose we want to measure r ∈ (0, 1). We

take the VBE machineM(y) with unknown mass y such that Texp(1/2, y) = Texp(f(r), y)

(it can be easily proved that r = 2y2). and T as any polynomial time schedule. Let `0 be

such that T (`0) > Texp(1/2, r). The oracle Turing machine M(y) on input 1n calls the

procedure BinarySearch[3, IP ](`), where ` = max{n+ 1, `0}, from which it gets m, and

computes the value 2m−1. Since |f(r)−m| < 2−`, we also have that |r−(2m−1)| < 2−n.

Since T (n) is polynomial, by Proposition 14 (a) the number of steps is bounded by a

polynomial. �

6. Measuring with the VBE machine with unbounded precision

The measuring algorithm provided for protocol of type I operating with unbounded

precision is very similar to algorithm BinarySearch[3, IP ]. Its goal is again to measure

the value r > 1/2 for which Texp(1/2, y) = Texp(r, y), where y is the “unknown mass”.

Lemma 16. Let s be a possible result of compare[1, UP ](1�`,m�`), for any unknown

mass of size 1/2 < y <
√

2/2. Let r > 1/2 denote the point such that Texp(1/2, y) =

Texp(r, y). Suppose that ` and h are such that 2−` < 1/2|1/2− y| and

2h ≥
√

(1 + y)/(y|y − 1/2|3) + 1 .

Then, (a) if s =“first”, then r ≥ m−2−`+h and (b) if s =“second”, then r ≤ m+2−`+h.

Proof: When we perform the protocol compare[1, UP ](1�`,m�`), the test mass to be

placed on the first balance, which we denote by z1, lies in (1/2 − 2−`, 1/2 + 2−`). The
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imprecision in the mass induces an imprecision in the experimental time, that is, the

experimental time Texp(z1, y) lies in (Texp(1/2, y)−∆t, Texp(1/2, y)+∆t), for some value

of ∆t. This imprecision induces an imprecision in the mass close to r, that is, there is

an interval (r − ∆r, r + ∆r) that contains the values z2 of masses close to r such that

Texp(z2, y) ∈ (Texp(1/2, y) −∆t, Texp(1/2, y) + ∆t). The assumption 2−` < 1/2|1/2 − y|
allows us to use the mean value theorem, just as we did in the proof of Proposition

10, to estimate ∆r. For any z1 ∈ (1/2 − 2−`, 1/2 + 2−`) let z2 be close to r such that

Texp(z1, y) = Texp(z2, y). There are ξ1 ∈ (1/2− 2−`, 1/2 + 2−`) and ξ2 ∈ (r−∆r, r+ ∆r)

such that

|z1 −
1

2
||T ′exp(ξ1, y)| = |Texp(z1, y)− Texp(1/2, y)| = |Texp(z2, y)− Texp(r, y)|

= |z2 − r||T ′exp(ξ2, y)|.

Using the inequalities ξ1 ≥ 0, |ξ1 − y| ≥ 1/2|1/2 − y|, ξ2 ≤ 1, |ξ2 − y| ≤ 1/2, we obtain,

from Proposition 10, |z2 − r| ≤
√

(1 + y)/(y|y − 1/2|3) × 2−`. Thus, we can take ∆r =√
(1 + y)/(y|y − 1/2|3) × 2−`. Let us consider again compare[1, UP ](1�`,m�`). If m >

r + ∆r + 2−`, then the result cannot be “first” (the experimental time Texp(m, y) is

simply too low). By the same reasoning, if m < r −∆r − 2−`, then the result cannot be

“second”. From these two facts, with 2h ≥
√

(1 + y)/(y|y − 1/2|3) + 1, we obtain the

desired results. �

Algorithm “BinarySearch[1, UP ](`)”

“Mass”: Unbounded precision case

input a natural number ` – number of places to the right of the left leading 0;
x0 := 1/2;

x1 := 1;

while x1 − x0 > 2−` do begin
m := (x0 + x1)/2;

s := compare[1, UP ](1�`,m�`);
if s = “first” then x0 = m else x1 = m

end while;

output the dyadic rational denoted by m.

Figure 9. Procedure to obtain an approximation of a real number y, with a test mass z in the

left pan of the balance.

Lemma 17. For any unknown mass of size y > 1/2 and any time schedule T , let

r > 1/2 be such that Texp(1/2, y) = Texp(r, y) and h be a non-negative integer such that

2h ≥
√

(1 + y)/(y|y − 1/2|3) + 1. Then (a) the time complexity of algorithm of Figure 9

for input ` is O(`T (`)) and (b) if T (`) > Texp(1/2, y) and 2−` <
√

(1 + y)/(y|y − 1/2|3),

then the output of algorithm Binary Search 1 UP for input ` is a dyadic rational m such

that |r −m| < 2−`+h+1.

Lemma 18. For any real number y ∈ (0, 1), there exists the VBE machine M(y) op-

erating on the mass y with type I protocol with unbounded precision such that: (a) for

all size n ∈ N, M(y) halts for the input word 1n and the content of the output tape
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is a dyadic rational z such that |z − r| < 2−n and (b) the number of steps of M(y) is

bounded by a polynomial in n.

Proof: This is a consequence of Lemma 17. For any real value r, we take r′ = r+1
2

and V BE as the intended experiment, where the unknown mass y is chosen such that

Texp(1/2, y) = Texp(r′, y). Take T as any polynomial time schedule. Then there is a

constant `0 such that T (`0) > Texp(1/2, y) and 2−`0 <
√

(1 + y)/(y|y − 1/2|3). Take h

such that 2h ≥
√

(1 + y)/(y|y − 1/2|3) + 1. The oracle Turing machine, for input 1k,

consists in a call to BinarySearch[1, UP ](`) where ` = max{k + h + 2, `0}, obtaining a

result m, and then returns the value 2m−1. Since |r′−m| < 2−`+h+1, we also have that

|r − (2m − 1)| < 2−k with probability 1. Since T (k) is polynomial, the number of steps

is then bounded by a polynomial. �
The measuring algorithm for protocol type 2 operating with unbounded precision and

tolerance g is different from the measurement algorithm for protocol type 1 operating with

unbounded precision. When we were considering protocol type 1 operating with infinite

precision, we saw that, in compare[2, IP, g](z1, z2) at step k, we had |z1 − z2| = 2−k−2

and |z1− a|, |z2− a| ≤ 2−k. In the following algorithm, we make oracle queries for words

of size `+ 3. In this way, we guarantee that at step k, k = 0, . . . ≤ `− 1, the imprecision

in placing the test masses is at most 2−`−3 ≤ 2−k−4, thus ensuring that in the call to

compare[2, UP, g](z1, z2) we have that |z1 − z2| ≥ 2−k−3. In this way we obtain a time

difference greater than or equal to const. × 2k/2/8. Therefore, our algorithm will work

for all choices of time precision g such that g ∈ o(λn. 2n/2).

Algorithm “BinarySearch[2, UP, g](`)”

“Mass”: Unbounded precision case

input a natural number ` — number of places to the right of the left leading 0;

x0 := 0;

x4 := 1;
x2 := (x0 + x1)/2;

while x4 − x0 > 2−` do begin
x1 := (x0 + x2)/2;
x3 := (x2 + x4)/2;

s1 := compare[2, UP, g](x1�`+3, x2�`+3);

s2 := compare[2, UP, g](x2�`+3, x3�`+3);
if s1 = “second” or “indistinguishable” then (x0, x2, x4) := (x0, x1, x2);

else if s2 = “first” or “indistinguishable” then (x0, x2, x4) := (x2, x3, x4);

else if s1 = “first” and s2 = “second” then (x0, x2, x4) := (x2, x3, x4);
else if s1 = “timeout” or s2 = “timeout” then x0 := x2; x4 := x2

end while;

output the dyadic rational denoted by x2.

Figure 10. Procedure to obtain an approximation of an unknown mass y in the right pan of the

balance.

Lemma 19. For any unknown mass of size y, any time schedule T and any time

precision g such that g ∈ o(λn. 2n/2), let s be a possible result of one of the calls
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compare[2, UP, g](z1�`+3, z2�`+3) during the execution of algorithm of Figure 10. Then,

(a) if s =“first”, then y ≥ z1 − 2−`−3, (b) if s =“second”, then y ≤ z2 + 2−`−3, (c) if

s =“undistinguishable”, then z1−2−`−3 ≤ y ≤ z2 + 2−`−3, and (d) if s =“timeout”,

then |y − z1| < (µ/T (`+ 3))2 + 2−`−3 and |y − z2| < (µ/T (`+ 3))2 + 2−`−3.

Proposition 20. For any unknown mass of size y, any time schedule T and any time

precision g such that g ∈ o(λn. 2n/2), (a) the time complexity of algorithm of Figure 10

on input ` is O(`T (`)), (b) for all k ∈ N, there exists ` ∈ N such that T (`+3) ≥ µ2(k+1)/2

and thus the output of the same algorithm for input ` is a dyadic rational m such that

|y −m| < 2−k, moreover ` is at most exponential in k, and (c) if T (k) is exponential in

k, then the value of ` witnessing T (`) ≥ µ2k/2 can be taken to be linear in k.

Proposition 21. For any real number y ∈ (0, 1), there exists the VBE machine M(y)

operating on the mass y with type II protocol with unbounded precision and time tol-

erance g ∈ o(λn. 2n/2) such that: (a) for all size n ∈ N, M(y) halts for the input word

1n and the content of the output tape is a dyadic rational z such that |z − r| < 2−n and

(b) the number of steps of M(y) is bounded by a polynomial in n.

Proof: This is a consequence of Proposition 20. For any real value y, we take V BE as the

intended experiment with unknown mass y. Take T as any exponential time schedule. The

oracle Turing machine, for input 1n, consists simply in a call to BinarySearch[1, IP ](`),

where ` is chosen such that ` ≥ n+ 1 and T (`+ 3) ≥ 2(n+2)/2 (moreover ` is linear in n),

thus producing the desired approximation with probability 1. Since T (n) is exponential

in n and ` is linear in n, the number of steps of the VBE machine is bounded by a

function in O(`2an) ⊆ O(2(a+1)n), for some a. �

7. Measuring with the VBE machine with fixed precision

The final case to consider is that of fixed precision. The measurement algorithms that we

are going to specify do not produce approximations to a given mass. Instead, the goal is

to compute the approximation to the probability of some particular event. We are going

to obtain approximations to the probability of getting “first” from compare[...](10�`
, 11�`), corresponding to the test masses 1/2 and 3/4, with fixed precision ε for the mass

and time tolerance g, either in the type I or type II protocols.

Proposition 22. Let T be a time schedule such that T (2) > Texp(1/2, 3/4) =
√

5.

For any mass y ∈ (1/2, 3/4), let Pfirst(y) denote the probability of obtaining result

“first” in protocol compare[1, FP (ε)](10, 11) (resp. compare[2, FP (ε), g](10, 11), for

any time tolerance g) for the experiment with test mass y. Then, for any sufficiently

small ε, Pfirst(1/2) = 0, Pfirst(3/4) = 1 and Pfirst is a continuous, increasing function

in (1/2, 3/4).

The above proposition entails that, by the intermediate value theorem, for any intended

probability p, there is some mass y such that Pfirst(y) = p, and so we can compute

approximations to p by setting y as desired and repeating several times the protocol call

compare[...](10, 11). All that is left is to formalize the algorithm and state its properties.
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Proposition 23. In the fixed precision scenario, with protocol type I or II, with any time

tolerance, for any time schedule T such that T (2) > Texp(1/2, 3/4), there exists a suffi-

ciently small ε such that, for any unknown mass of size y and natural number h, (a) the

time complexity of algorithm FreqCountFP(ε, h) of Figure 11 is O(22`), where ` is the

input, and (b) with probability of error 2−h, the output of algorithm FreqCountFP(ε, h)

on input ` is a dyadic rational m such that |Pfirst(y)−m| < 2−`.

Proof: The procedure compare[P](10, 11) can be seen as a Bernoulli trial with probabil-

ity of success p. Let α be the quantity of experiments returning “first” in ζ = 22`+h−2

trials and X denote the estimator X = α/ζ. we conclude that E[X] = p and V[X] ≤
1/(4ζ). The probability that |X−p| > 2−` can be bounded by the Chebyshev’s inequality,

P (|X − p| > 1/2`) ≤ V[X]× 22` ≤ 22`/(4ζ) = 2−h. �

Algorithm “FreqCountFP(ε, h)”

“Mass”: Finite precision case

input a natural number ` – used to set the precision of the approximation;

counter := 0;
ζ := 22`+h−2;

repeat ζ times

s := compare[P](10, 11); %P is both for the first and the second types

if s = “first” then counter := counter + 1

end repeat;
output the dyadic rational denoted by counter/ζ.

Figure 11. Procedure to obtain an approximation of a real probability p, assuming fixed

precision ε and unknown mass of size y such that Pfirst(y) = p. The value h is an integer

number used to bound the probability of error.

Proposition 24. For any real number y ∈ (0, 1), for all sufficiently small ε, and for all

γ ∈ (0, 1/2), there exists the VBE machine M(y) clocked in exponential time operat-

ing, either with type I protocol or type II protocol with arbitrary tolerance, with fixed

precision ε, such that, for every n ∈ N, every computation of M(y) on input word 1n

halts with a dyadic rational z as output, such that, with probability of failure at most γ,

|z − r| < 2−n.

Proof: This is a consequence of Proposition 23. We take any time schedule T such that

T (2) > Texp(1/2, 3/4), any ε ∈ (0, 1/2) in the conditions of Proposition 22 and, for

any γ ∈ (0, 1), any positive integer number h such that 2−h ≤ γ. Now consider the

oracle Turing machine that, for input word 1`, makes a call to FreqCountFP(ε, h)(`). For

any real number r we take the VBE machine with unknown mass y chosen such that

Pfirst(y) = r, where Pfirst is given by Proposition 22. The above machine produces the

desired approximation with probability of failure at most 2−h ≤ γ. Furthermore, the

number of steps is bounded by a function of the order of O(22`). �
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8. Tossing coins with the VBE machine

The final step before establishing lower bounds is to find out which protocols can be used

with the VBE to simulate coin tosses. As expected, any probabilistic protocol suffices;

that is, only Type I and Type II protocols operating with infinite precision and infinite

precision and tolerance 0, respectively, do not allow for fair coin tosses.

Proposition 25. The VBE machine operating with type I protocol with unbounded

or fixed precision for sufficiently small ε can simulate arbitrarily long sequences of fair

independent coin tosses, to within a specified chance of failure.

Proof: For a given y, let z be a dyadic rational such that z 6= y and let ` ≥ |z| be

such that T (`) > Texp(z, y). Observe that both calls compare[..., UP, ...](z�`, z�`) and

compare[..., FP (ε), ...](z�`, z�`) have more than one possible result (in fact, both return

“first” or “second” with the same, non-null probability). �

Proposition 26. The VBE machine operating with type II protocol with infinite, un-

bounded, or fixed precision, for sufficiently small ε and non-null tolerance g, permits coin

tosses.

Proof: For a given y, let z be a dyadic rational such that z 6= y and let ` ≥ |z| be such that

T (`) > Texp(z, y) and g(`) > 0. Now observe that protocol call compare[2, P, g](z�`, z�`),
where P is any of the protocol variants, has more than one possible result (in fact, both

return “first” or “second” with the same, non-null probability). �

Proposition 27. The VBE machine operating with type II protocol with unbounded

or fixed precision, for sufficiently small ε and tolerance 0, permits coin tosses.

Proof: For a given unknown mass y, we will find a dyadic rational z of size ` such that the

protocol call compare[2, UP, 0](z�`, z�`) (resp. compare[2, FP (ε), 0](z�`, z�`)) returns

“first” or “second” with the same probability. We will require that T (`) > Texp(z, y)

(this ensures that we do not get “timeout” with probability 1) and dTexp(z−2−`, y)e 6=
dTexp(z + 2−`, y)e (resp. dTexp(z − ε, y)e 6= dTexp(z + ε, y)e; this ensures that we do not

get “undistinguishable” with probability 1). The above constraints are satisfied by

considering a large enough integer k such that equation Texp(x, y) = k, for fixed y, has a

solution x. We then take ` such that T (`) > k and z of size ` such that z − 2−` < x ≤ z
(resp. z − ε < x ≤ z). �

9. Encoding discrete functions as real numbers

Denote the Cantor numbers by C3, the set of real numbers x such that x =
∑∞
k=1 xk2−3k,

where xk ∈ {1, 2, 4}, i.e., the numbers composed by triples of the form 001, 010, or 100.

Proposition 28. For every x ∈ C3 and for every dyadic rational z ∈ (0, 1) with size

|z| = m, (a) if |x − z| ≤ 1/2i+5, then the binary expansions of x and z coincide in the

first i bits and (b) |x− z| > 1/2m+10.
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Proof: (a) First suppose that z and x coincide on the first i− 1 bits and differ on the ith

bit. We have two relevant cases.

z < x: In this case zi = 0 and xi = 1. In the worst cases the binary expansion for z

after the ith position begins with a sequence of 1s and the binary expansion for x after

the ith position begins with a sequence of 0s:

i lower bound of |x− z|

z · · · 011111 · · ·
x (case i ≡3 0) · · · 100100 · · · > 2−(i+3)

x (case i ≡3 1) · · · 100001 · · · > 2−(i+5)

x (case i ≡3 2) · · · 100010 · · · > 2−(i+4)

z > x: In this case zi = 1 and xi = 0. In the worst cases the binary expansion for z

after the ith position begins with a sequence of 0s and the binary expansion for x after

the ith position begins with a sequence of 1s:

i lower bound of |x− z|

z · · · 1000 · · ·
x (case i ≡3 0) · · · 0100 · · · > 2−(i+2)

x (case i ≡3 1) · · · 0101 · · · > 2−(i+2)

x (case i ≡3 2) · · · 0110 · · · > 2−(i+3)

We conclude that in any case |x− z| > 2−(i+5). Thus, if |x− z| ≤ 2−(i+5), then x and

z coincide in the first i bits.

(b) Since the binary expansion of z after the mth bit is exclusively composed of 0s and

any Cantor number x ∈ C3 has at most four consecutive 0s in its binary expansion, we

conclude that, in the best fit, z and x can not coincide in the m+ 5th bit. Thus, by (a),

|x− z| > 2−(m+10). �
Now we will encode a given advice function f : N → {0, 1}? into a real number in

(0, 1), using # as a string delimiter.

Definition 29. The encoding of a word w ∈ Σ?, denoted by c(w), is the binary ex-

pression of the real number obtained first by converting w to a string of 0’s and 1’s,

and then replacing every 0 by 100 and every 1 by 010. Given a function f ∈ log?, we

denote the encoding of f by the real number µ(f) = limµ(f)(n), recursively defined by

(a) µ(f)(0) = 0 · c(f(0)), (b) µ(f)(n + 1) = µ(f)(n)#c(s) whenever f(n + 1) = f(n)#s

and n + 1 is not a power of two, and (c) µ(f)(n + 1) = µ(f)(n)#c(s)#001, whenever

f(n+ 1) = f(n)#s and n+ 1 is a power of two.

The encoding above consists on replacing the bits of f by triples 100 and 010, adding

001 at the end of each code of f(2k), with k ∈ N. Observe that, by construction, µ(f) ∈ C3.

Also, from the encoding we need to get back values of the advice f . To obtain f(2k),

we just have to read the bits of µ(f) in triples until the (k + 1)-th triple 001 is found.

Consequently, one may say that, whenever f ∈ log?, by knowing O(k) bits of the real

number µ(f), we can know f(2k).
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Bounds similar to those in the proposition above have other uses – compare the role

of Proposition 3.5 in the continuity studies in (Pauly & Ziegler 2013).

10. Lower bounds on the computational power of the VBE machine

We studied all variety of protocols sufficiently enough to prove the following theorems.

Proposition 30. If A ∈ P/poly , then A is decidable in polynomial time by the VBE

machineM(y) for some suitable y operating with type I protocol using infinite precision.

Proof: This proof of this proposition follows the steps of Proposition 32, mutatis mutandis.

�

Proposition 31. (a) If A ∈ P/poly , then A is decidable in polynomial time by the

VBE machineM(y) for some suitable y operating with type I protocol using unbounded

precision. (b) If A ∈ BPP//log?, then A is decidable in polynomial time by the VBE

machine operating with type I protocol and sufficiently small fixed precision ε.

Proof: This proof of this proposition follows the steps of Proposition 33, mutatis mutandis,

noting that P/poly = BPP//poly . �

Proposition 32. If A ∈ P/log?, then A is decidable in polynomial time by the VBE

machineM(y) for some suitable y operating with type II protocol using infinite precision

and tolerance zero.

Proof: Let f be a prefix function in log andM be a Turing machine running in polynomial

time such that, for every n ∈ N and every word w of size less than or equal to n, w ∈ A
if and only if M accepts 〈w, f(n)〉. Take y to be the encoding of f as a real number in

(0, 1). According with Proposition 12, there exists an integer k, an oracle Turing machine

M′(y) and a time schedule T , such that (a) for every n ∈ N, M′(y) on input 1n halts

and outputs the dyadic rational z such that |z − r| < 2−n and (b) the number of steps

ofM′(y) is bounded by a function in 2O(n). Our next step is to define the oracle Turing

machine,M′′(y), that decides A. For a given input w of size n, we perform a sequence of

experiments to compute f(n′), for some n′ > n. We take n′ = 2dlog(n)e. In this way, we

can obtain f(n′) if we know the binary expansion of y up to the (dlog(n)e+ 1)-th triple

of the form 001.

Since f ∈ log, this means that there are constants a and b such that, for all n, |f(n)| ≤
a log(n) + b. In particular, |f(n′)| ≤ adlog(n)e + b. Thus, we need to know at most the

first 3(adlog(n)e + b) + 3(dlog(n)e + 1) bits of the binary expansion of y to get to the

desired triple 001. Finally, we specify our VBE machine, M′′(y) using time schedule T .

For a given input word w of size n, it simulates the machine M′(y) for input 1`, where

` = 3(a+1)dlog(n)e+3b+8. By the discussion above, the result is a dyadic rational z such

that |z−r| < 2−` and thus z and r coincide in the first `−5 = 3(a+1)dlog(n)e+3(b+1)

bits, and so z can be used to decode f(n′). Afterwards, simulate M for the input word

〈w, f(n′)〉 and accept or reject based on the result of the simulation. It is clear that this

machine decides A. The time complexity of the simulation ofM′(y) is O(2a`). Since ` is
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logarithmic on n, the result is polynomial in n. And since M runs in polynomial time,

we conclude that M′′(y) also runs in polynomial time. �

Proposition 33. (a) If A ∈ BPP//log?, then A is decidable in polynomial time by

the VBE machine operating with type II protocol with unbounded precision and time

tolerance g ∈ o(λn.2n/2). (b) If A ∈ BPP//log?, then A is decidable in polynomial

time by the VBE machine operating with type II protocol with sufficiently small fixed

precision and any time tolerance.

Proof: We prove for the case of unbounded precision. The proof relative to the fixed

precision case is similar. We use a proof similar to the proof of Proposition 32, but now

we have to take into account both the error probability in measuring and the simulation

of a fair coin toss.

Let f be a prefix function in log, γ1 be a real number in (0, 1/2) and N be a Turing

machine running in polynomial time such that, for any natural number n and any word

w of size less than or equal to n,

if w ∈ A, then N rejects 〈w, f(n)〉 with probability at most γ1;

if w 6∈ A, then N accepts 〈w, f(n)〉 with probability at most γ1.

Let p3 be a polynomial bound on the running time of N . Let also r be the coding

y = µ(f) and γ3 be such that γ1 + γ3 < 1/2. Then, according with Propositions 21

(unbounded precision) and 24 (fixed precision), there is an integer k, an oracle Turing

machineM(y), and a time schedule T such that: (a) for all size n, every computation of

M(y), for input word 1n, halts and, with probability of failure at most γ3, the content

of the output tape is a dyadic rational z such that |z − y| < 2−n and (b) the number of

steps of M(y) is bounded by a function in O(2an).

•

• •

• •

• •

—

compute f(n′)

—

generate coin tosses

—

simulate N

—

—

p1(|w|)

—

p2(|w|)

—

p3(|w|)

—

—

γ3

—

γ2

—

γ1

—

w, |w| = n

Figure 12. Behaviour of the oracle Turing machine M′.

Furthermore, in agreement with Propositions 26 or 27, we conclude that there is a

dyadic rational z such that the protocol call with query z has more than one possible

result with non-null probability. This means that protocol call has a probability of δ of
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producing some result r1, with δ ∈ (0, 1). Let also γ2 be a positive real number such

that γ1 + γ2 + γ3 < 1/2. There is an integer K (depending on δ and γ2) such that, for

all n, we can use Kn independent biased coin tosses to simulate n fair coin tosses, with

probability of failure at most γ2.

Our next goal is to define the oracle Turing machineM′ that will be used to decide A.

Given input w of size n, the idea is again to use the experiment to compute f(n′) where

n′ = 2dlogne. For that purpose at most the first 3(C1dlog(n)e + C2) + 3(dlog(n)e + 1)

bits of the binary expansion of y are needed, for some constants C1 and C2. Thus, begin

by simulating M for input word 1` where ` = 3(C1 + 1)dlog(n)e + 3C2 + 8. By the

above discussion, with probability of failure at most γ3, the result is a dyadic rational

m such that |m − y| < 2−` and thus, by Proposition 28, m and r coincide in the first

`− 5 = 3(C1 + 1)dlog(n)e+ 3(C2 + 1) bits, and so m can be used to decode f(n′).

In the next step, use the dyadic rational z to produce a sequence of Kp3(n) independent

biased coin tosses, and then attempt to extract from that sequence p3(n) fair coin tosses.

In case of failure (with probability at most γ2) simply reject the input word. Otherwise,

simulate N for the input word 〈w, f(n′)〉, using the sequence of fair coin tosses to choose

the path of computation. To finish the computation, accept or reject based on the result

of the simulation.

Let us see that the machine decides A. If w ∈ A, then the machine may reject w if the

wrong approximation of f(n′) was produced or if it failed in producing the sequence of

independent coin tosses or if the simulation of N rejected 〈w, f(n′)〉. This happens with

probability at most γ1 + γ2 + γ3. If w 6∈ A, then the machine may accept A if the wrong

approximation of f(n′) was produced or if the simulation of N accepted 〈w, f(n′)〉, which

happens with probability at most γ1 + γ3. So this means that the probability of failure

is bounded by γ1 + γ2 + γ3 < 1/2.

Let us see that the machine runs in polynomial time. The time complexity of the first

step is O(2a`), which is again bounded by some polynomial in n, p1(n). The second step

also ends in some polynomial time p2(n) since we need only Kp3(n) biased coin tosses,

which is a polynomial amount, and each coin toss takes constant time. And since N runs

in polynomial time p3, we conclude that M′ runs in polynomial time p1 + p2 + p3. �

11. Upper bounds on the computational power of the VBE machine

Given a vanishing value oracle (that is, an oracle with three or four possible random

answers), we can depict the sequence of the answers in a binary tree, where each path

is labeled with its probability. The leaves of these trees are marked with accept or

reject. Then, to get the probability of acceptance of a particular word, we simply add

the probabilities for each path that ends in acceptance. The next basic idea is to think

of what would happen if we change the probabilities in the tree. This means that we are

using the same procedure of the Turing machine, but now with a different probabilistic

oracle. Suppose that the tree has depth m and there is a real number β that bounds

the difference in the probabilities labeling all pairs of corresponding edges in the two

trees. Proposition 2.1 of (Beggs, Costa, Loff & Tucker 2009), states that the difference

in the probabilities of acceptance of the two trees is at most 2mβ. We need to state and
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prove a result equivalent to this one, but for 3-adic and 4-adic trees (see Figure 13). In

(Beggs, Costa, Loff & Tucker 2009) we defined fd(m,β) as the largest possible difference

in probabilities of acceptance for two different assignments of probabilities with difference

at most β in a d-adic probabilistic tree of depth m.

Definition 34. Let d be an integer with d ≥ 2. By a d-adic probabilistic tree we mean

a pair (T , D) where:

— T is a tree with some set of nodes or vertices V , some set of edges E and some set

of leaves L ⊆ V ;

— D : E → [0, 1] is a map that assigns to each edge u a probability D(u);

— T is a d-adic tree, that is, each inner node has exactly d children; moreover, if

u1, . . . , ud are its outgoing edges then D(u1) + . . .+D(ud) = 1;

— Each leaf is either an accepting node (labeled with ‘A’) or a rejecting node (labeled

with ‘R’).

(T , D)

(T1, D1)

p1

(T2, D2)

p2

(T3, D3)

p3

(T4, D4)

p4

(T , D′)

(T1, D
′
1)

p′1

(T2, D
′
2)

p′2

(T3, D
′
3)

p′3

(T4, D
′
4)

p′4

Figure 13. Proving Proposition 35

Given two d-adic probabilistic trees (T , D) and (T , D′) with the same d-adic tree T (see

Figure 13), we define the distance d(D,D′), as d(D,D′) = maxu∈E |D(u)−D′(u)|. Let T dm
denote the set of d-adic trees of depth at most m and T ∈ T dm. Define fd : N×[0, 1]→ [0, 1]

by

fd(m,β) = max
d(D,D′)≤β

|P (T , D)− P (T , D′)|

Thus fd(m,β) gives the largest possible difference in probabilities of acceptance for

two different assignments of probabilities with difference at most β.

Proposition 35. For any m ∈ N and β ∈ [0, 1], f3(m,β) ≤ 2mβ and f4(m,β) ≤ 3mβ.

Proof: This proposition is a generalization of Proposition 2.1 in (Beggs, Costa, Loff &

Tucker 2009). The proof involves some algebra but is more or less straightforward. �

Proposition 36. If A is decidable in polynomial time by the VBE machineM(y) for y ∈
(0, 1) operating with any protocol P with exponential time schedule, then A ∈ P/poly .

Proof: Let A be a set decidable by the VBE machine operating with protocol P with an

exponential schedule T . Let c and d be constants such that, for an input word of size

n, all queries have size at most dc log n + de. A query of size k is defined by two dyadic

rationals of size k, so there are exactly 22k possible queries of size k. This means that
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the number of different possible queries in a computation with an input word of size n

is at most polynomial in n:

dc logn+de∑
i=1

22i <
22d+2

3
n2c .

If P is deterministic, then the advice function f is the concatenation of all triples

〈z1, z2, r〉 such that z1 and z2 are dyadic rationals of size k ≤ dc log n+ de and r encodes

the result of protocol call compare[P](z1, z2). (There are either three or four possible

results, so r may be encoded with only two bits.) If P is probabilistic, then the advice

function f is the concatenation of all tuples 〈z1, z2, pf , ps, pt, pu〉 such that z1 and

z2 are dyadic rationals of size k ≤ dc log n + de and pf , ps, pt, pu are approximations

to the probabilities of obtaining each possible result (“first”, “second”, “timeout”

or “undistinguishable”) of protocol call compare[P](z1, z2). We will approximate

each probability with a dyadic rational of size k such that the error in the probability

of any query is bounded by 2−k. To find the suitable value of k, we observe that the

VBE machine deciding A runs in polynomial time O(na) and so the number of possible

queries in the computation of any word of size n is at most bna, for some constant b.

The probabilistic tree induced by the computation has a depth at most bna. Now, if γ is

the bound on the error probability associated with the machine, by Proposition 35, we

take k such that 3bna2−k < 1/2− γ, that is, 2k > 3bna/(1/2− γ). Such a k can then be

taken to be logarithmic in n. In either case f ∈ poly since f is the concatenation of a

polynomial amount of tuples each with logarithmic size.

We specify a Turing machineM to decide A in polynomial time using f as advice.M
simulates the VBE machine for the same input word. When reaching a query state with

query words z1 and z2, it reads the appropriate tuple in f . In the deterministic case, the

machine resumes the computation in the proper outcome state. In the probabilistic case,

the machine uses the approximations to the probabilities of each result and choose one

of them with k coin tosses. In the deterministic case, it is clear that this machine decides

A in polynomial time. In the probabilistic case, this machine induces a probabilistic tree

in the same way as the original machine, with depth less than bna and edge difference

lower than 2−k. Then, by Proposition 35 and the above calculations, the difference in the

probabilities of acceptance is then bounded by a constant less than 1/2 − γ. Thus, the

probability that this machine gives a wrong answer is bounded by a constant less than

1/2, and so the machine specified decides A in polynomial time. �
This proposition is not enough for our purposes: in the first implementation we will be

looking for non-exponential time schedules and in the second implementation we want

to establish the upper bounds of P/log? or BPP//log?.

11.1. Upper bounds for type I protocol

The technique that will be applied to type I protocol relies on Proposition 38, that can

be used to decide the result of an oracle query for the infinite precision case. Recalling

timing for the VBE in 2.2, we begin by defining the boundary numbers.
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Definition 37. Let y ∈ (0, 1) be the size of the unknown mass and T the time schedule

of a particular VBE machine. Then, for every natural number k, we define `k and rk as

the real numbers in (0, 1) such that `k < y < rk and Texp(`k, y) = Texp(rk, y) = T (k).

Proposition 38. Let y ∈ (0, 1) be the size of the unknown mass and T the time schedule

of a particular VBE machine for the first protocol type operating with infinite precision.

Let z1 and z2 be two dyadic rationals of size k. Let s be the result of the protocol

call compare[1, IP ](z1, z2). Then, (a) if `k ≤ z1, z2 ≤ rk, then s =“timeout”, (b) if

z1 < `k ≤ z2 < rk or `k ≤ z2 ≤ rk < z1, then s =“first”, (c) if z2 < `k ≤ z1 ≤ rk
or `k ≤ z1 ≤ rk < z2, then s =“second”, (d) if z1 < z2 < `k or rk < z2 < z1,

then s =“first”, (e) if z2 < z1 < `k or rk < z1 < z2, then s =“second”, (f) if

z1 < `k < rk < z2 and z1z2 ≤ y2, then s =“first”, (g) if z1 < `k < rk < z2 and

z1z2 > y2, then s =“second”, (h) if z2 < `k < rk < z1 and z1z2 > y2, then s =“first”,

and (i) if z2 < `k < rk < z1 and z1z2 ≤ y2, then s =“second”.

Proof: All the cases except for the last four are obvious. For the last four cases, we can

assume, without loss of generality, that z1 < `k < rk < z2. To know the answer of protocol

call compare[1, IP ](z1, z2) we need to compare Texp(z1, y) and Texp(z2, y). Using the fact

that z1 < y and z2 > y, a quick calculation reveals that Texp(z1, y) < Texp(z2, y) if and

only if
√

(z1 + y)/(y − z1) <
√

(z2 + y)/(z2 − y) if and only if z1z2 < y2. �
We can then use the algorithm of Figure 14 to simulate oracle queries for the first

oracle type with infinite precision.

Algorithm “simulate(1, IP )(z1, z2)”

input two dyadic rational numbers z1 and z2 with same size k;
Advice consists of three dyadic rational numbers `k, rk (with size k) and y2 (with size 2k);

if `k ≤ z1, z2 ≤ rk then return “timeout”;
if z1 < `k ≤ z2 ≤ rk or `k ≤ z2 ≤ rk < z1, then return “first”;

if z2 < `k ≤ z1 ≤ rk or `k ≤ z1 ≤ rk < z2, then return “second”;

if z1 < z2 < `k or rk < z2 ≤ z1, then return “first”;
if z2 < z1 < `k or rk < z1 ≤ z2, then return “second”;

if z1 < `k < rk < z2 and z1z2 ≤ y2, then return “first”;

if z1 < `k < rk < z2 and z1z2 > y2, then return “second”;
if z2 < `k < rk < z1 and z1z2 > y2, then return “first”;

if z2 < `k < rk < z1 and z1z2 ≤ y2, then return “second”.

Figure 14. Procedure to simulate an oracle query of size k; it receives as advice the suitable

approximations of the boundary numbers `k and rk and of y2, where y is the size of the

unknown mass.

Proposition 39. If A is a set decidable in polynomial time by the VBE machine with

type I protocol operating with infinite precision, then A ∈ P/poly . (Note the difference

relative to Proposition 36: Proposition 39 is independent of the time schedule.)

Proof: Let M(y) be the VBE machine with protocol of the first type operating with

infinite precision that decides A in polynomial time. Since M(y) runs in polynomial
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time, there is a polynomial bound bna to the size of the queries during the computation

relative to an input of size n. Consider the advice function f such that

f(n) = `1�1#r1�1# · · ·#`t�t#rt�t#y2�2t ,

where y is the unknown mass associated withM, `k and rk are the corresponding bound-

ary numbers and t = bna, so that f ∈ poly. Now consider the Turing machine M′ with

advice f that, for an input word of size n, simulates the VBE machineM(y) and, when-

ever in the query state, runs the algorithm simulate(1, IP ) for the input z1 and z2 of

size k, i.e. the content of the query tape, using `k�k, rk�k and y2�2k as advice. Clearly,M′
has the same behaviour as M(y) and, since each simulation can be done in polynomial

time, this machine also runs in polynomial time. It follows that A ∈ P/poly . �
For the unbounded precision case remember that when a word z is written on the query

tape the actual test mass is a real number uniformly and independently sampled in the

interval (z − 2−|z|, z + 2−|z|). To simulate an oracle query, we will first randomly choose

a dyadic rational of size |z|+ s in the interval (z − 2−|z|, z + 2−|z|) (that is, we approach

the real test mass with a dyadic test mass); this can be done with s+1 coin tosses. Doing

this twice we obtain two dyadic rationals z′1 and z′2 close to z1 and z2, respectively; then

we simulate an experiment with infinite precision with z′1 and z′2, using approximations

of `k, rk and y2 (using the algorithm simulate[1, IP ]). The whole idea is described in

Figure 15.

Algorithm “simulate[1, UP ](z1, z2)”

Input two dyadic rational numbers z1, z2 of size k and the desired precision s;

Advice consists of three dyadic rational numbers `k, rk (with size k + s)

and y2 (with size 2(k + s));

Randomly choose a dyadic rational z′1 of size k + s in (z1 − 2−k, z1 + 2−k);
%This can be done with s+ 1 coin tosses

Randomly choose a dyadic rational z′2 of size k + s in (z2 − 2−k, z2 + 2−k);

%This can be done with s+ 1 coin tosses

Return the output of simulate[1, IP ](z′1, z
′
2) with advice (`k, rk, y

2).

Figure 15. Procedure to simulate an oracle query of size k; it receives as advices

approximations of the boundary numbers `k and rk and of y2, where y is the unknown mass.

We observe that the algorithm simulate[1, UP ](z1, z2, s) is probabilistic, like the pro-

tocol call compare[1, UP ](z1, z2). The next step should be to bound the difference in

probabilities between these two procedures. As the following proposition shows, this

bound depends on the precision s of the quantizer.

Proposition 40. If p is the probability of obtaining result “first”, “second” or “time-

out” in the protocol call compare[1, UP ](z1, z2), for the unbounded precision case, for

an unknown mass y and any time schedule T , and q is the probability of obtaining

the same result in algorithm simulate[1, UP ](z1, z2, s), receiving as advice approxima-

tions of y2 as well as the boundary numbers `k and rk associated with y and T , then

|p− q| < 2−s+1.
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TIMEOUTFIRST FIRST

SECOND
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Figure 16. Regions.

Proof: When protocol call compare[1, UP ](z1, z2) is made for dyadic rationals of size k,

we can think of the actual test masses used as a point (ξ, υ) uniformly and independently

sampled in the two-dimensional region R = (z1 − 2−k, z1 + 2−k)× (z2 − 2−k, z2 + 2−k).

This region can be divided in three different regions: (a) the region Rf where the result

is “first”, that is defined by the equations

(ξ < `k ∧ ξ < υ < y2/ξ) ∨ (ξ > rk ∧ y2/ξ < υ < ξ) ,

(b) the region Rs where the result is “second”, that is defined by the equations

(υ < `k ∧ υ < ξ < y2/υ) ∨ (υ > rk ∧ y2/υ < ξ < υ) ,

(c) the region Rt where the result is “timeout”, that is defined by the equations

(`k < ξ < rk) ∧ (`k < υ < rk). Then, the probability of obtaining some result “first”,

“second” or “timeout” is simply the area of the corresponding region divided by the

area of the full square, which is 2−2k+2. Figure 16 shows the various regions for a possible

situation.

When we are simulating the oracle query with algorithm simulate[1, UP ], we are

basically approximating each region by a union of small squares; we are dividing R into

an array of 2s+1 by 2s+1 squares, each of these squares has a representative (ξ, υ) where ξ

and υ are dyadic rationals of size 2k+s. Then, the probability of obtaining a given result

is simply the number of squares for which its representative falls in the corresponding

region, divided by the total number of squares, which is 22s+2. To bound the difference

in probability we observe that this difference comes from the squares containing points

in more than one region. We call these squares tainted. Observe that, whenever a square

is not tainted, that is, completely confined to one of the regions Rf , Rs, Rt, it does not

contribute to the error in the probability used in the simulation. In other words, only

the tainted squares contribute to the error. This step is decisive, since it implies that the
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absolute difference |p − q| is bounded by the total area of the tainted squares. Finally,

a simple counting argument reveals that the total number of tainted squares is at most

2(2× 2s+1 − 1)− 1 < 2s+3. In this way, we obtain the desired bound in the difference of

probabilities, as |p− q| < 2s+3/22s+2 = 2−s+1. �

Proposition 41. If A is a set decidable in polynomial time by the VBE machine oper-

ating with type I protocol and unbounded precision, then A ∈ P/poly .¶

Proof: Let A be decidable in polynomial time by the VBE machine operating with type

I protocol and unbounded precision. We will prove that A ∈ BPP//poly . There is a

polynomial bound bna on both the size of a query and the number of queries that can

be made during the computation on an input word of size n. We want to approximate

the probability of any possible result of any possible query with a dyadic rational of size

e, for a suitable e, such that the difference in probabilities of any query is bounded by

2−e. If γ is the bound on the error probability associated with the VBE machine, then,

by Proposition 35, the suitable value of e must be such that 2× bna2−e < 1/2− γ, that

is, 2e > 2bna/(1/2− γ). (The probabilistic tree induced by the VBE machine is ternary

in this case.) Such a e can be taken to be logarithmic in n.

Now we consider the advice function f such that

f(n) = `1�2+e#r1�2+e# · · ·#`t�t+e+1#rt�t+e+1#y
2�2(t+e+1) ,

where y is the unknown mass associated with the VBE machine, `k and rk are the

corresponding boundary numbers and t = bna. It is immediate that f ∈ poly. We specify

a machine for deciding the set A in polynomial time, using f as advice. This machine

simulates the VBE machine for the same input word. Whenever in a query state with

query words z1 and z2 of size k, it runs algorithm simulate(1, UP ) for the input z1, z2
(in the query tape) and e+ 1, using `k�k+e+1, rk�k+e+1 and y2�2(k+e+1) as advice. This

machine induces a probabilistic tree in the same way as the original machine, with depth

lower than bna. Thanks to Proposition 40, the edge difference is also lower than 2−e.

Then, by Proposition 35, the difference in the probabilities of acceptance is bounded by

a constant less than 1/2− γ. Since each simulation can be done in polynomial time, this

machine also runs in polynomial time. It follows that A ∈ BPP//poly =P/poly . �

The remaining case is that of the fixed precision ε. The idea is the same as in the

unbounded precision case, that is, we will devise a randomized algorithm to simulate

oracle queries. For two given dyadic rationals z1, z2 we discretize the region

R = (z1 − ε, z1 + ε)× (z2 − ε, z2 + ε) .

In the unbounded precision case it was easy to select a dyadic rational of fixed size in the

interval (z−2−|z|, z+2−|z|) since the amplitude was itself a dyadic rational; for the fixed

precision we have to deal with the fact that ε may not be a dyadic rational. The idea

that we will use is as follows: let t be a natural number such that 2−t−1 < ε ≤ 2−t; we

randomly choose a dyadic rational z′ ∈ (z−2−t, z+ 2−t) of size σ (this can be done with

¶ Again, this result does not depend on any particular time schedule.
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σ− t+1 coin tosses);‖ then with probability at least 1/2 we obtain that z′ ∈ (z−ε, z+ε).

If we repeat the above procedure h times then we can get a dyadic rational of size σ

with probability of failure less than 2−h. Moreover all dyadic rationals of size σ in the

interval have the same probability of being chosen. This is the core idea for simulating

oracle queries with fixed precision.

Algorithm “simulate(1, FP (ε))”

input two dyadic rational numbers z1 and z2 with size k, the desired precision σ, and h;

Advice consists of four dyadic rational numbers `k, rk (size σ), y2 (size 2σ) and ε (size σ);
Find t such that 2−t−1 < ε ≤ 2−t; %Just count the number of 0s in the head of ε

repeat h times

Randomly choose a dyadic rational z′1 of size σ in (z1 − 2−t, z1 + 2−t);
%This can be done with σ − t+ 1 coin tosses

if z′1 ∈ (z1 − ε, z1 + ε) then break;

end repeat;
if z′1 6∈ (z1 − ε, z1 + ε) then return “timeout”;

repeat h times

Randomly choose a dyadic rational z′2 of size σ in (z2 − 2−t, z2 + 2−t);
%This can be done with σ − t+ 1 coin tosses

if z′2 ∈ (z2 − ε, z2 + ε) then break;

end repeat;
if z′2 6∈ (z2 − ε, z2 + ε) then return “timeout”;

simulate[1, IP ](z′1, z
′
2) with advice (`k, rk, y

2)

Figure 17. Procedure to simulate an oracle query of size k; it receives as advice approximations

of the boundary numbers `k and rk, of y2 where y is the unknown mass, and of the fixed

precision ε. Observe that the result “timeout” in two instructions is irrelevant; we could

choose any other result, since the probability of the algorithm ending in any of this

instructions will decrease to 0 as we increase the value of h.

Proposition 42. If p is the probability of obtaining result “first”, “second” or “time-

out” in the protocol call compare[1, FP (ε)](z1, z2), for an unknown mass y and any

time schedule T , and q is the probability of obtaining the same result in algorithm

simulate[1, FP (ε)](z1, z2, σ, h) of Figure 17 receiving as advice approximations of y2

and ε as well as the boundary numbers `k and rk associated with y and T , then |p− q| <
2−h+1 + ε 2−σ+3 + 2−σ+2/ε.

Proof: There are three situations that change the probability of a given result: (a) the

algorithm fails to produce the desired dyadic rational of size σ, (b) the algorithm does not

take into account a small area in the outer part of the region R, and (c) the algorithm has

different probabilities in the inner part of the region R. The first situation occurs with

probability less than 2−h+2−h. Regarding the second situation, let N = bε×2σc; observe

that the dyadic rationals produced by the algorithm that are in (z − ε, z + ε) belong in

fact to the interval (z −N2−σ, z +N2−σ); this means that we are approaching region R

‖ Observe that σ may be smaller than |z|; i.e. the dyadic rational generated has smaller size than z;
the intuitive meaning of this is that increasing the size of the queries does not contribute to increase

their precision.
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of Figure 16 by region R′ = (z1 − N2−σ, z1 + N2−σ) × (z2 − N2−σ, z2 + N2−σ). This

means that we must account for the difference between the areas of these two regions,

which is bounded by 4×2ε×2−σ. Finally, the calculations for the third situation are the

same as in the proof of Proposition 40; we divide R′ by an array of 2N by 2N squares;

counting the number of tainted squares we conclude that the difference in probabilities

is less than 2/N . Now using the fact that N > ε2σ/2 we obtain the desired bound of

2−h+1 + ε 2−σ+3 + 2−σ+2/ε. �

Proposition 43. If A is a set decidable in polynomial time by the VBE machine oper-

ating with type I protocol and fixed precision ε, then A ∈ P/poly .

Proof: Let A be decidable in polynomial time by the VBE machine operating on a mass y

with type I protocol and fixed precision ε. First we observe that, to obtain a bound of 2−e

on the difference of probability in any oracle query, it suffices to consider h and σ such

that h = e+ 2 and σ = e+ 3 + dlog(2ε+ 1/ε)e and invoke Proposition 42. (The constant

3+dlog(2ε+1/ε)e can be hard-wired into the machine.) Since there is a polynomial bound

bna on both the size of a query and the number of queries that can be made during the

computation on an input word of size n, we take e such that 2e > 2bna/(1/2− γ). Next

we consider the advice function f such that

f(n) = `1�σ#r1�σ# · · ·#`t�σ#rt�σ#y2�2σ#ε�σ ,

where y is the unknown mass associated with VBE machine, `k and rk are the corre-

sponding boundary numbers and t = bna. It is immediate that f ∈ poly (actually, σ is

logarithmic in n).

The machine that decides the set A in polynomial time, using f as advice, simply

simulates the VBE machine for the same input word and replaces oracle calls by algorithm

simulate[2, FP (ε)] using as input the content of the query tape as well as k and σ, and

using as advice the appropriate `k and rk as well as y2 and ε. This machine induces

a probabilistic tree in the same way as the original machine. By Proposition 35 and

the above discussion, the difference in the probabilities of acceptance is bounded by a

constant less than 1/2 − γ. Since each simulation can be done in polynomial time, this

machine also runs in polynomial time. It follows that A ∈ BPP//poly =P/poly . �

Proposition 44. If A is a set decidable in polynomial time by the VBE machine oper-

ating with type I protocol and fixed precision ε, then A ∈ BPP//log?.

Proof: We strengthen the proof of Proposition 43 assuming without loss of generality

that, as a function of n, T (n)2 > 2. The boundary numbers `k and rk are such that

`k = y(1− 2

T (k)2 + 1
) rk = y(1 +

2

T (k)2 − 1
)

We can use d + 2 digits of y to obtain a precision of d digits on `k and rk. As in the

previous proof, σ can be taken as logarithmic in n, i.e. σ = ξdlog(n)e+ e, with ξ, e ∈ N.

We define an auxiliary function f̃ such that (a) f̃(0) is the concatenation of the first

e + 2 bits of y, the first 2e bits of y2, and the first e bits of ε, and (b) f̃(t + 1) is the
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concatenation of f̃(t), the bits from e+ξt+3 to e+ξt+ξ+2 of y, the bits from 2e+2ξt+1

to 2e+ 2ξt+ ξ of y2, and the bits from e+ ξt+ 1 to e+ ξt+ ξ of ε.

We can use f̃(t) to obtain the first ξt + e + 2 digits of y, the first 2ξt + 2e digits

of y2, and the first ξt + e digits of ε. By the previous discussion, we can then use the

approximations of y to compute the first ξt+ e bits of any real `i or ri. Also, we can see

that |f̃(t)| = ξt+ e+ 2 + 2ξt+ 2e+ ξt+ e = O(t). Finally, the advice function required

is g̃(n) = f̃(dlog(n)e). Observe that g̃ is a prefix function and that |g̃(n)| = O(log(n)).

Furthermore, g̃(n) can be used to compute f(n) on the proof of Proposition 43. Now

we specify a probabilistic machine for deciding set A in polynomial time, using g̃ as

advice. Simply retrieve f from g̃ and then use the machine specified in the proof of the

previous proposition. Since this retrieval can be made in polynomial time and the above

machine also runs in polynomial time, we conclude that A is decided by this procedure

in polynomial time, as we wanted to prove. �

11.2. Upper bounds for type II protocol

We consider now the type II protocol. In this implementation there are two aspects to

consider in order to simulate oracle queries: (a) the need to compute the exact number

of machine steps that an experiment takes and (b) the need to produce integer numbers

in the range [−g(k), g(k)] where g is the time tolerance and k is the query size. The first

is solved with a suitable advice and the second is solved by the randomizer of Figure 18.

Proposition 45. For any h ∈ N, (a) the time complexity of algorithm random for an

input g of size n and number h is O(hn) and (b) with probability of failure less than

2−h, the output of algorithm random for input g is an integer in [−g, g].

Algorithm “random”

input natural numbers g – defines the range [−g, g] – and h – number of iterations;

s = dlog(2g + 1)e; % 2g+1 is the number of possible results

repeat h times
Randomly choose a natural number r ∈ [0, 2s); %It can be done with s coin tosses;

if r ≤ 2g then break; %This happens with probability greater than 1/2

end repeat;
if r > 2g then return “fail”;

textsfreturn r − g.

Figure 18. Probabilistic procedure to find an integer in the range [−g, g] with probability of

failure bounded by 2−h.

We will use algorithm random several times in the following proofs; observe also that

not all time tolerances are simulatable; in particular, we prove upper bounds under the

assumption that g is computable in polynomial time. We also need to define a sequence

of real numbers, similar to the boundary numbers.
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Definition 46. Let y ∈ (0, 1) be the size of the unknown mass of a particular VBE

machine. We define the section numbers `′k and r′k for every k ∈ N, as the real numbers

in (0, 1) such that `′k < y < r′k and Texp(`′k, y) = Texp(r′k, y) = k.

The section numbers effectively split the interval [0, 1] according to the corresponding

experimental time. Moreover, given a dyadic rational z, in order to compute the time

taken for an experiment with test mass z (assuming infinite precision and zero time

tolerance) we simply need to find k such that either `′k−1 < z ≤ `′k or r′k < z ≤ r′k−1.

Observe also that the boundary numbers are a particular case of section numbers since

`k = `′T (k) and rk = r′T (k).

Proposition 47. If A be a set decidable in polynomial time by the VBE machine op-

erating with type II protocol with infinite precision and time tolerance g ∈ PF , then

A ∈ P/poly .

Proof: Let M(y) be the VBE machine operating with mass y and deciding A in polyno-

mial time with protocol simulate(2, IP, g) of figure 19, where g ∈ PF . In the case that

g 6≡ 0, let γ ∈ (0, 1/2) bound the probability of failure. Since M(y) runs in polynomial

time, there is a polynomial bna such that, for every input word of size n: (a) it bounds the

number of possible queries and (b) it bounds the maximum possible size of a query. Con-

sider the advice function f such that f(n) = `′1�t#`
′
2�t# · · ·#`′t�t##r′t�t# · · ·#r′2�t#r′1�t,

where t = bna. That is, f(n) is a non-decreasing sequence of dyadic rationals of size t that

divide the interval [0, 1] in intersecting sub-intervals corresponding to each experimental

time. Observe that timeouts occur when the test mass lies in (`′t, r
′
t).

The machine that decides the set A in polynomial time, using f as advice, simply

simulates M for the same input word of size n. Whenever in a query state, M(y) se-

quentially compares the query words z1 and z2 with the dyadic rationals in the advice,

thus obtaining T1 and T2 such that dTexp(z1, y)e = T1 and dTexp(z2, y)e = T2. In the case

that `t < zi < rt (that is, the experiment times out), we take Ti as t+ 1.

In the case that g is the null function, we can simply resume the computation in

the corresponding state (“first”, “second”, “timeout” or “indistinguishable”) by

comparing T1, T2 and t. For a non-null g, we produce two random integers r1 and r2 with

two calls to random(g(|z1|, h) for a suitable value of h.†† If any of these calls fail (with

probability less than 2−h) we resume the computation in the state “timeout”. Otherwise

we compare T1+r1, T2+r2 and t and resume the computation in the corresponding state.

To find the suitable value of h, observe that this machine induces a probabilistic tree in

the same way asM(y), with edge difference lower than 2× 2−h. The depth of the tree is

bounded by t which is polynomial in n. Thus, we take h such that 3×t×2×2−h < 1/2−γ,

that is, 2h > 6t/(1/2 − γ), so that h is polylogarithmic in n. Then, by Proposition

35, the difference in the probabilities of acceptance is bounded by a constant less than

1/2− γ and so the probability that this machine gives a wrong answer is bounded by a

constant less than 1/2. In either case (g ≡ 0 or g 6≡ 0) each simulation can be done in

†† This is the step in which we assume that g ∈ PF .
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polynomial time, so this machine also runs in polynomial time. It follows that A ∈ P/poly

or A ∈ BPP//poly , which are the same. �

Algorithm “simulate[2, IP, g]”

input two dyadic rational numbers z1 and z2 – both with same size k –

and a natural number h – precision desired;

Advice consists of a sequence of dyadic rationals `′′1 , . . . , `
′′
T , r
′′
T , . . . , r

′′
1

approximating the section numbers;

T is half of the number of dyadic rationals in the above sequence;

Find T1 such that `′′T1−1 < z ≤ `′′T1
or r′′T1

< z ≤ r′′T1−1;

if no such T1 exists then T1 = T + 1;

Find T2 such that `′′T2−1 < z ≤ `′′T2
or r′′T2

< z ≤ r′′T2−1;

if no such T2 exists then T2 = T + 1;
T1 := T1 + random(g(k));

T2 := T2 + random(g(k));
Compare T1 and T2:

if T1 > T and T2 > T then return “timeout”;

if T1 < T2 then return “first”;
if T1 > T2 then return “second”;

if T1 = T2 then return “indistinguishable”.

Figure 19. Procedure to simulate an oracle query of size k; it receives as advice approximations

`′′1 , ..., `′′T and r′′1 , ..., r′′T of the section numbers `′1, . . . , `
′
T and r′1, . . . , r

′
T as in the proof of

Proposition 47; assume that g ∈ PF .

For the other precision cases, we again consider a technique similar to quantization.

To simulate an oracle query with test masses z1 and z2 of size k, we first generate in a

random way dyadic rationals z′1 and z′2 of a suitable size close to z1 and z2, respectively;

then we simulate an experiment with infinite precision with z′1 and z′2 using algorithm

simulate[2, IP, g].

Algorithm “simulate[2, UP, g]”

input two dyadic rational numbers z1 and z2 — both with same size k

— and natural numbers s and h — desired precision;
Advice consists of a sequence of dyadic rationals `′′1 , . . . , `

′′
T , r
′′
T , . . . , r

′′
1

approximating the section numbers;

Randomly choose a dyadic rational z′1 of size k + s in (z1 − 2−k, z1 + 2−k);
%This can be done with s+ 1 coin tosses

Randomly choose a dyadic rational z′2 of size k + s in (z2 − 2−k, z2 + 2−k);

%This can be done with s+ 1 coin tosses

textsfreturn the output of simulate[2, IP, g](z′1, z
′
2, h) with the same advice.

Figure 20. Procedure to simulate an oracle query of size k; it receives as advice approximations

`′′1 , . . . , `
′′
t and r′′1 , . . . , r

′′
t of the section numbers `′1, . . . , `

′
t and r′1, . . . , r

′
t as in the proof of the

Proposition 48; assume that g ∈ PF .

Proposition 48. If p be the probability of obtaining either result “first”, “second”,

“timeout” or “indistinguishable” in protocol compare[2, UP, g](z1, z2), for an un-
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known mass y, any time schedule T , and any time tolerance g ∈ PF , and q is the probabil-

ity of obtaining the same result in algorithm simulate[2, UP, g](z1, z2, s, h) of Figure 20,

where z1 and z2 have size k, receiving as advice dyadic rationals `′′1 , . . . , `
′′
t , r
′′
t , . . . , r

′′
1 ap-

proximating the section numbers `′1, . . . , `
′
t, r
′
t, . . . , r

′
1 such that |`′′i −`′i|, |r′′i −r′i| < 2−k−s,

then |p− q| < 2−h+1 + 2−s+2 T (k).

Proof: We can think that the actual test masses used are points (ξ, υ) uniformly and

independently sampled in the two-dimensional region

R = (z1 − 2−k, z1 + 2−k)× (z2 − 2−k, z2 + 2−k) .

This region can be divided in regions Ri, i ∈ N, where Ri is the set of points (ξ, υ) such

that dTexp(ξ, y)e−dTexp(υ, y)e = i. Then, the probability of obtaining a time difference of

i (not accounting for the time tolerance) is simply the area of the corresponding region

divided by the area of the full square, which is 2−2k+2. Figure 21 shows the various

regions for a possible situation.
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Figure 21. Example of the regions, for the square [0, 1]× [0, 1], with y = 1/2.

Finally, the probability of obtaining a given result “first”, “second”, “timeout” or

“indistinguishable” is the weighted sum of the above probabilities, such that region Ri
has a weighted probability corresponding to the probability of obtaining that result given

that the time difference is i. When we are simulating the oracle query with algorithm

simulate[2, UP, g], we are dividing R into an array of 2s+1 by 2s+1 squares, each of

these squares has a representative (ξ, υ) where ξ and υ are dyadic rationals of size 2k+s.

Then, the probability of obtaining a time difference of i is the number of squares for

which its representative falls in the corresponding region, divided by the total number

of squares, which is 22s+2. To bound the difference in probability we observe that once

more only the tainted squares contribute for a difference in probabilities; in this case the
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tainted squares are those that lie in a zone where the integer part of the time changes

(in Figure 21 this correspond to the dashed lines). Thus the absolute difference |p − q|
is bounded by the total area of the tainted squares. A simple counting argument reveals

that the total number of tainted squares is less than 4×2s+1×m where m is the number

of vertical lines (m is bounded by twice the largest value of the time schedule). We

also need to add the probability of getting failures when performing algorithm random

which is 2−h+1. Thus, we obtain the desired bound in the difference of probabilities, as

|p− q| < 2−h+1 + 8× T (k)× 2s+1/22s+2 = 2−h+1 + 2−s+2T (k). �

Proposition 49. If A is a set decidable in polynomial time by the VBE machine oper-

ating with type II protocol with unbounded precision and time tolerance g ∈ PF , then

A ∈ P/poly . Moreover, if the time schedule T is exponential, then A ∈ BPP//log?.

Proof: Let M(y) be the VBE machine operating with mass y deciding A in polynomial

time with protocol (2, UP, g) where g ∈ PF . Let γ ∈ (0, 1/2) bound the probability of

failure. Since M runs in polynomial time, there is a polynomial bna bounding all of the

following, in the computation of an input word of size n: (a) the number of queries made,

(b) the maximum possible size of a query, and (c) the largest value taken by the time

schedule (that is, T (k) where k is the maximum possible size of a query). Consider the

advice function f such that f(n) = `′1�t#`
′
2�t# · · ·#`′t�t##r′t�t# · · ·#r′2�t#r′1�t, where

t = bna and t+ s for a suitable choice of s. That is, f(n) is a non-decreasing sequence of

dyadic rationals of size t+ s dividing the interval [0, 1] in sub-intervals corresponding to

each experimental time. Observe that timeouts occur when the test mass lies in (`′t, r
′
t).

The machine which decides set A in polynomial time, using the function f as advice,

simply simulatesM(y) for the same input word of size n and replaces protocol calls with

simulate(2, UP, g)(z1, z2, s, h) for a suitable choice of h. The difference in probabilities,

by Proposition 48, is less than 2−h+1 + 2−s+2 t. To find the suitable values of s and

h, observe that this machine induces a probabilistic tree in the same way as M(y),

with depth bounded by t which is polynomial in n. Thus, we take h and s such that

3 × t × (2−h+1 + 2−s+2 t) < 1/2 − γ, for example, taking 2h > 12t/(1/2 − γ) and 2s >

24t2/(1/2 − γ), so that h and s are logarithmic in n. Then, by Proposition 35, the

difference in the probabilities of acceptance is bounded by a constant less than 1/2 − γ
and so the probability that this machine gives a wrong answer is bounded by a constant

less than 1/2. Since each simulation can be done in polynomial time, this machine also

runs in polynomial time. It follows that A ∈ P/poly .

Finally, in the assumption that T is exponential, the maximum possible size of a query

is bounded by some value σ which is logarithmic in n. But in this case we can take an

advice function f̃ consisting on the binary expansion of y from which we can retrieve

approximations of `′i and r′i by taking `′′i = y (i2−1)/(i2 +1) and r′′i = y (i2 +1)/(i2−1).

It can be seen in a similar reasoning to previous proofs that to get an approximation

with precision 2−σ−s we need σ + s + 2 digits of y, thus f̃ can be taken to be a prefix

function in log. Now we can retrieve f from f̃ and repeat the same procedure to decide

A in polynomial time, thus concluding that A ∈ BPP//log?. �
For the fixed precision case, all we need to do is devise once more an algorithm to

simulate queries and then prove the upper bound.
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Proposition 50. Let r be any of the following results “first”, “second”, “timeout”

or “indistinguishable”. If p is the probability of obtaining the result r in the pro-

tocol call compare[2, FP (ε), g](z1, z2), for an unknown mass y, any time schedule T

and any time precision g ∈ PF , and q is the probability of obtaining result r in algo-

rithm simulate[1, FP (ε), g](z1, z2, σ, h) of Figure 22 receiving as advice dyadic rationals

`′′1 , · · · , `′′t , r′′t , · · · , r′′1 such that |`′′i − `′i|, |r′′i − r′i| < 2−σ and an approximation of ε with

error less than 2−σ, then |p− q| < 2−h+2 + ε 2−σ+3 + 2−σ+3 T (|z1|)/ε.

Proof: There are four situations that change the probability of a given result: (a) the

algorithm failed in producing a desired dyadic rational of size σ, (b) the algorithm failed

in sampling a random integer in [−g(z1), g(z1)], (c) the algorithm does not take into

account a small area on the outer part of the region R, and (d) the algorithm has

different probabilities in the inner part of the region R. The first situation occurs with

probability less than 2−h + 2−h. The second situation occurs also with probability less

than 2−h + 2−h. Regarding the third and fourth situations, let N = bε× 2σc > 1
2ε2

σ; the

small region that is not accounted has area less than 4× 2ε× 2−σ. For the last situation

we repeat the reasoning as in Proposition 48; the number of tainted squares is less than

4NT (|z1|). We obtain the desired bound of 2−h+2 + ε 2−σ+3 + 2−σ+3 T (|z1|)/ε. �

Algorithm “simulate[2, FP (ε)](z1, z2)”

input two dyadic rational numbers z1 and z2 – both with same size k –

and natural numbers σ and h – precision desired;
Advice consists of a sequence of dyadic rationals `′′1 , · · · , `′′T , r

′′
T , · · · , r

′′
1

approximating the section numbers and ε (size σ);

Find t such that 2−t−1 < ε ≤ 2−t; %Just count the number of 0s in the head of ε;
%This can be done with s+ 1 coin tosses

repeat h times

Randomly choose a dyadic rational z′1 of size σ in (z1 − 2−t, z1 + 2−t);
%This can be done with σ − t+ 1 coin tosses

if z′1 ∈ (z1 − ε, z1 + ε) then break
end repeat;
If z′1 6∈ (z1 − ε, z1 + ε) Then Return “timeout”;

repeat h times

Randomly choose a dyadic rational z′2 of size σ in (z2 − 2−t, z2 + 2−t);
%This can be done with σ − t+ 1 coin tosses

if z′2 ∈ (z2 − ε, z2 + ε) then break
end repeat;
if z′2 6∈ (z2 − ε, z2 + ε) Then Return “timeout”;

simulate(2, IP, g)(z′1, z
′
2, h) with advice given by the section numbers

Figure 22. Procedure to simulate an oracle query of size k; receives as advices approximations

`′1, . . . , `
′
t and r′1, . . . , r

′
t of the section numbers `1, . . . , `t and r1, . . . , rt and of the fixed

precision ε; assume that g ∈ PF .

Proposition 51. If A is a set decidable in polynomial time by the VBE machine op-

erating with type II protocol with fixed precision ε and time precision g ∈ PF , then

A ∈ BPP//log?.



Edwin Beggs, José Félix Costa, Diogo Poças & John V Tucker 44

Proof: Let M(y) be the VBE machine operating with mass y deciding A in polynomial

time with protocol (2, FP (ε), g) where g ∈ PF . Let γ ∈ (0, 1/2) bound the probability

of failure. Since M(y) runs in polynomial time, there is a polynomial bna bounding the

number of queries made (which bounds the depth of the computation tree) and the largest

value taken by the time schedule, during any computation of any word of size n. We

consider an advice function such that f(n) contains the bits of y and ε. For an input word

of size n, let t = bna. First we take h and σ such that 3×t×(2−h+2+ε 2−σ+3+2−σ+3 t)/ε <

(1/2−γ), which can be achieved with 2h > 24t/(1/2−γ) and 2σ > 48t(ε+t/ε)/(1/2−γ).

Once more, h and σ are logarithmic in n. To get approximations of the section numbers

with error less than 2−σ we need σ + 2 bits of y. This means that our advice f will

contain the first σ + 2 bits of y and σ bits of ε. The advice function can be specified as

in previous proofs, that is, at each new power of 2 we append to the advice a constant

amount of bits of each of these three constants. Thus f is a prefix function in log.

The machine that decides set A in polynomial time, using f as advice, begins by

using the approximations of y to produce approximations to the section numbers. Then

it simulates M(y) for the same input word, and also replaces the protocol calls with

simulate(2, FP (ε), g)(z1, z2, σ, h) for the suitable choices of σ and h mentioned above,

using as advice the approximations of the section numbers and of ε. The difference in

probabilities, by Proposition 48, is less than 2−h+2 + ε 2−σ+3 + 2−σ+3 t/ε. Then, by

Proposition 35, the difference in the probabilities of acceptance is bounded by a constant

less than 1/2−γ and so the probability that this machine gives a wrong answer is bounded

by a constant less than 1/2. Since each simulation can be done in polynomial time, this

machine also runs in polynomial time. It follows that A ∈ BPP//log?. �

12. Concluding remarks

12.1. Computational theory of measurement

Measurement theory is about operations on the real world that define real numbers: see

(Hempel 1952), (Carnap 1966), and the three-volume (Krantz, Suppes, Luce & Tversky

1990). In our computational approach we have considered an idealised experimenter as a

Turing machine, and an idealised experiment to measure a physical quantity as an oracle

to the Turing machine.

Typically, to measure the value of a physical quantity as a real number we use approxi-

mations. In principle, whenever possible, the algorithm conducting the experiment should

approximate the unknown quantity by a series of experimental values that converges. The

time needed to consult the oracle is not any more a single step of computation but a num-

ber of time steps that will depend on the precision. Two-sided measurements have been

considered in (Beggs, Costa, Loff & Tucker 2008; Beggs, Costa & Tucker 2010b; Beggs,

Costa & Tucker 2010c; Beggs, Costa & Tucker 2012a; Beggs, Costa & Tucker 2012b) and

threshold experiments in (Beggs, Costa, Poças & Tucker 2013a; Beggs, Costa, Poças &

Tucker 2013b). The main complexity classes of Turing machines coupled with these mea-

surements have been studied here for the case of vanishing quantities. We have seen two

vanishing experiments, there are more: the Brewster angle experiment is an example of a
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common physical measurement that falls into this class, while the VBE is constructed to

be simple to describe and use in theory development. What is the scope of these results?

To answer this we need to

(i) axiomatise a specification of the interface to a physical oracle, and

(ii) provide certification lemmas to check whether a given experiment actually satisfies

the oracle interface.

This is an open problem. A first attempt is (Beggs, Costa & Tucker 2014), which gave

a lower bound.

Type of Oracle Infinite Unbounded Finite

lower bound P/log? BPP//log? BPP//log?

Two-sided upper bound P/poly P/poly P/poly
upper bound (w/ exponential T ) −− −− −−

lower bound P/log? BPP//log? BPP//log?
Threshold upper bound −− −− −−

upper bound (w/ exponential T ) P/log? BPP//log? BPP//log?

lower bound P/poly P/poly BPP//log?

Vanishing Type 1 upper bound P/poly P/poly BPP//log?
(Parallel) upper bound (w/ exponential T ) −− −− −−

lower bound P/log? BPP//log? BPP//log?
Vanishing Type 2 upper bound P/poly P/poly BPP//log?

(Clock) upper bound (w/ exponential T ) −− BPP//log? −−

Figure 23. Table of complexity classes of polynomial time Turing machines with different

experiments, considered with different concepts of precision and time tolerance. Two-sided

experiments have been considered in (Beggs, Costa, Loff & Tucker 2008; Beggs, Costa, Loff &

Tucker 2009; Beggs, Costa & Tucker 2010b; Beggs, Costa & Tucker 2010c; Beggs, Costa &

Tucker 2012a; Beggs, Costa & Tucker 2012b) and threshold experiments in (Beggs, Costa,

Poças & Tucker 2013a).

12.2. Comparing the power of oracles

The original and primary purpose of an oracle is to boost algorithms. Let us compare

the characteristics of the vanishing experiments described here with the other types of

experiments described previously – see (Beggs, Costa, Loff & Tucker 2008; Beggs, Costa &

Tucker 2010b; Beggs, Costa & Tucker 2010c; Beggs, Costa & Tucker 2012a; Beggs, Costa

& Tucker 2012b; Beggs, Costa, Poças & Tucker 2013b). The three types of experiments

have the following common characteristics:

— A real value is being measured.

— (characteristic 1). A query corresponds to a classical query to the oracle in the

following sense: the answer is “yes”, or “no”, or “timeout” (meaning no answer in

the given time).

— Queries express dyadic rational putative values of the concept being measured.
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— The cost of the oracle to the Turing machine expresses the time required by the

experiment.‡‡

Note that characteristic 1 clarifies that the answer should be a qualitative aspect of

the experimental apparatus, e.g., a detection, and not dependent on prior measurements.

The threshold oracles introduced in (Beggs, Costa, Poças & Tucker 2013a; Beggs, Costa,

Poças & Tucker 2013b) have a different characteristic 1, namely:

— characteristic 2. A query corresponds to a classical query to the oracle in the

following sense: the answer is “yes”, or “timeout”.

The vanishing oracles studied in this paper differ also from characteristic 1, 2,

namely:

— characteristic 3. A query does not correspond to a classical query to the oracle in

the following sense: two queries are made at the same machine (experimenter) time;

if the oracle answers first to query number one, then it is interpreted as a “yes”, else

if the oracle answers first to query number two, then is interpreted as a “no”, and

otherwise a “timeout” or an “indistinguishable” is returned.

Figure 23 reports on lower and upper bounds of VBE machines together with the

results of our previous research on the two-sided and threshold oracles.

12.3. Analogue systems

There are many forms of computational system involving analogue data. How relevant

are our physical oracles to such models and their applications? Most of the systems with

real valued parameters are based on a measurement: part of the control structure of the

system reads – in linear time, bit by bit – the binary expansion of some parameter. For

instance, this construction is found in the analog recurrent neural net (ARNN) model

of (Siegelmann & Sontag 1994), in the optical computer of (Woods & Naughton 2005),

and in the mirror system of Bournez and Cosnard (Bournez & Cosnard 1996). In the

ARNN case, a subsystem of about eleven neurones performs a measurement of the unique

non-rational weight of the network, approximating its value both from above and from

below. Once the measurement is done, up to some precision, the computation resumes.

Thus, we conclude that

Models of analogue computation “execute” a measurement assisted to some

extent by an algorithm, followed by a computation of arbitrary complexity.

The theory of analogue systems can then be reduced to algorithms with the ability

of making measurements. One way of doing so is by considering the measurement as an

oracle consulting algorithm.

This oracle has a cost function T : N → N that gives the number of time steps

‡‡ Remember that the classical connection between the Turing machine and the oracle is a one step

computation.
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allowed to perform the measurement of the next bit. The common dynamic systems in

the computational literature, having real parameters, perform measurements that cannot

be done in linear time. In a balance, the pans move with acceleration that depends on

the difference of masses placed in them, in a way such that the time needed to detect a

mass difference increases exponentially with the precision of the measurement, no matter

how small (yet fixed) that difference can be made. This measurement has an exponential

cost that should be considered in the complexity of the decision problem.§§

12.4. Physical systems and real number computation

The computability of physical systems has been studied from time to time over a long

period. Kreisel drew attention to the problem in (Kreisel 1974) and stimulated a wave of

interest, represented by the work of Marion Pour El and Ian Richards, e.g., the papers

(Pour-El 1974; Pour-El & Richards 1979; Pour-El & Richards 1981) and the monograph

(Pour-El & Richards 1989). The equations of physics constitute a vast subject domi-

nating Mathematical Analysis. The computable analysis of the equations of physics is

an essential activity, one that goes hand-in-hand with modelling systems under various

assumptions. Modelling requires persistence – Pour El and Richard’s striking and influen-

tial non-computability results are complemented by computability results in (Weihrauch

and Zhong 2002). Today’s literature on the computability of mathematical models of

physical systems is substantial, and the literature on computable analysis, where the

tools for this programme are to be found, is very considerable.

However, the approach here is not to start with established equations but with thinking

about physical systems. Questions arise from exploring physical situations: how does data

picture them, and how are operational aspects of physical systems to be theorised and

modelled mathematically? Our interest began with an extreme approach in which we

sought to exclude computability theory, attempting to develop algorithmic notions – data

and operations – from physical processes. This required a methodology and an interest

in physical models, e.g., in (Beggs and Tucker 2006; Beggs and Tucker 2007a; Beggs

and Tucker 2007b). The combination of computability theory and physical models for

physical oracles has enabled us to create a second, new approach to the computability of

physical systems that introduces new and influential notions and questions. For example,

the simple question, what effect does the act of measurement have on a real number

computation? Any physical experiment reveals that the using the real number involves:

(i) subtle issues of precision;

(ii) cost of consultation – e.g., the fact that exponential time on the size of the query

is common in Physics;

(iii) stochastic behaviour.

The physical oracle answers queries in a time T : N → N, dependent upon the size

§§ In the non-analytic piecewise linear neural net case, the cost function is like the common oracle Turing
machine: one step consultation device, since any further bit has the constant cost of k transitions, for

some constant k ∈ N – see (Siegelmann & Sontag 1994). This is due to the fact that the activation
function is piecewise linear instead of the common analytic sigmoid.
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of the query, modelling the fact that successive approximations have a cost that is not

necessarily linear in the number of bits of precision obtained.

For those seeking the clarity and stability of a pure mathematical understanding of

what are mathematical theorems, the combination – or intrusion – of physical models

gets in the way of a pure theory of real number oracles that should abstract from and

be applicable to physical measurements. However, the use of physical oracles should

be considered a strength of our approach, and necessary at least at this stage of our

understanding.

In the case of two-sided experiments, of which we have accumulated many physical

examples, our theories changed and grew quite surprisingly. For example, one can contrast

the early analysis of the wedge in (Beggs and Tucker 2007b; Beggs, Costa, Loff & Tucker

2008) with its subsequent treatment in (Beggs, Costa & Tucker 2012b): this was made

possible by our experience working on with the collider experiment in (Beggs, Costa &

Tucker 2010b). Collecting different physical oracles has been hugely productive, and the

new classification of experiments in (Beggs, Costa & Tucker 2014) comes directly from

thinking about and analysing physical experiments.

For the pure mathematician, these experiments may seem to be baggage: easy experi-

ments seem unnecessary and complicated experiments vexing. But for our scientific work

they were, and continue to be, essential. Certainly, after collecting many two-sided ex-

periments we provided a more general axiomatic approach to the computational power

theorems (Beggs, Costa & Tucker 2012a). However, that analysis required subtle cer-

tification lemmas about physical models to enable the general theorems to be applied.

In due course we have no doubt that interesting pure mathematics will emerge, but the

time is not right. Indeed, as we have looked at more complicated physical processes, we

have found new technical notions and tricks (timing and boundary numbers in this paper

being an example). Thus, our program is a work in progress, and, so far, it is true to say

that progress can be attributed to engagement with physical examples.
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