575 research outputs found
Demystifying ecological connectivity for actionable spatial conservation planning
There is a disconnect between global high-level conservation goals and on-the-ground actions such as maintaining ecosystem services or persistence and local planning of protected areas.
Dynamic processes such as ecological connectivity underpin species persistence and ecosystem resilience but are difficult to represent in mathematical spatial planning problems for protected areas.
Quantitative and SMART (specific â measurable â action-oriented â realistic â time-bound) conservation objectives can provide a link between high-level conservation goals and local or regional design and implementation of functionally connected protected area networks.
With current implementation gaps of protected area commitments and increasing climate change threats, there is tremendous opportunity to use quantifiable objectives for ecological connectivity as a vehicle to future-proof protected area networks to help achieve global conservation goals.
Connectivity underpins the persistence of life; it needs to inform biodiversity conservation decisions. Yet, when prioritising conservation areas and developing actions, connectivity is not being operationalised in spatial planning. The challenge is the translation of flows associated with connectivity into conservation objectives that lead to actions. Connectivity is nebulous, it can be abstract and mean different things to different people, making it difficult to include in conservation problems. Here, we show how connectivity can be included in mathematically defining conservation planning objectives. We provide a path forward for linking connectivity to high-level conservation goals, such as increasing speciesâ persistence. We propose ways to design spatial management areas that gain biodiversity benefit from connectivity
Molecular ecology meets systematic conservation planning
Integrative and proactive conservation approaches are critical to the long-term persistence of biodiversity. Molecular data can provide important information on evolutionary processes necessary for conserving multiple levels of biodiversity (genes, populations, species, and ecosystems). However, molecular data are rarely used to guide spatial conservation decision-making. Here, we bridge the fields of molecular ecology (ME) and systematic conservation planning (SCP) (the âwhyâ) to build a foundation for the inclusion of molecular data into spatial conservation planning tools (the âhowâ), and provide a practical guide for implementing this integrative approach for both conservation planners and molecular ecologists. The proposed framework enhances interdisciplinary capacity, which is crucial to achieving the ambitious global conservation goals envisioned for the next decade
Adjoint bulk scalars and supersymmetric unification in the presence of extra dimensions
There are several advantages of introducing adjoint superfields at
intermediate energies around GeV. Such as (i) gauge couplings still
unify (ii) neutrino masses and mixings are produced (iii) primordial lepton
asymmetry can be produced. We point out that if adjoint scalars have bulk
excitations along with gauge bosons whereas fermions and the doublet scalar
live on boundary then N=2 supersymmetric beta functions vanish.
Thus even if extra dimensions open up at an intermediate scale and all
N=2 Yang-Mills fields as well as N=2 matter fields in the adjoint
representation propagate in the bulk, still gauge couplings renormalize beyond
just like they do in 4-dimensions with adjoint scalars. Consequently
unification is achieved in the presence to extra dimensions, mass scales are
determined uniquely via Renormalization Group Equations(RGE) and unification
scale remains high enough to suppress proton decay. This scenario can be
falsified if we get signatures of extra dimensions at low energy.Comment: New references added. This version will appear in Phys. Rev.
Diversification of refugia types needed to secure the future of coral reefs subject to climate change
Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate
Comparing spatial conservation prioritization methods with site versus spatial dependencyâbased connectivity
Larval dispersal is an important component of marine reserve networks. Two conceptually different approaches to incorporate dispersal connectivity into spatial planning of these networks exist, and it is an open question as to when either is most appropriate. Candidate reserve sites can be selected individually based on local properties of connectivity or on a spatial dependency-based approach of selecting clusters of strongly connected habitat patches. The first acts on individual sites, whereas the second acts on linked pairs of sites. We used a combination of larval dispersal simulations representing different seascapes and case studies of biophysical larval dispersal models in the Coral Triangle region and the province of Southeast Sulawesi, Indonesia, to compare the performance of these 2 methods in the spatial planning software Marxan. We explored the reserve design performance implications of different dispersal distances and patterns based on the equilibrium settlement of larvae in protected and unprotected areas. We further assessed different assumptions about metapopulation contributions from unprotected areas, including the case of 100% depletion and more moderate scenarios. The spatial dependency method was suitable when dispersal was limited, a high proportion of the area of interest was substantially degraded, or the target amount of habitat protected was low. Conversely, when subpopulations were well connected, the 100% depletion was relaxed, or more habitat was protected, protecting individual sites with high scores in metrics of connectivity was a better strategy. Spatial dependency methods generally produced more spatially clustered solutions with more benefits inside than outside reserves compared with site-based methods. Therefore, spatial dependency methods potentially provide better results for ecological persistence objectives over enhancing fisheries objectives, and vice versa. Different spatial prioritization methods of using connectivity are appropriate for different contexts, depending on dispersal characteristics, unprotected area contributions, habitat protection targets, and specific management objectives.
Comparación entre los métodos de priorización de la conservación espacial con sitio y la conectividad espacial basada en la dependenci
Integrating larval connectivity into the marine conservation decision-making process across spatial scales.
Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales
Coral assemblages at higher latitudes favour short-term potential over long-term performance
The persistent exposure of coral assemblages to more variable abiotic regimes is assumed to augment their resilience to future climatic variability. Yet, while the determinants of coral population resilience across species remain unknown, we are unable to predict the winners and losers across reef ecosystems exposed to increasingly variable conditions. Using annual surveys of 3171 coral individuals across Australia and Japan (2016-2019), we explore spatial variation across the short- and long-term dynamics of competitive, stress-tolerant, and weedy assemblages to evaluate how abiotic variability mediates the structural composition of coral assemblages. We illustrate how, by promoting short-term potential over long-term performance, coral assemblages can reduce their vulnerability to stochastic environments. However, compared to stress-tolerant, and weedy assemblages, competitive coral taxa display a reduced capacity for elevating their short-term potential. Accordingly, future climatic shifts threaten the structural complexity of coral assemblages in variable environments, emulating the degradation expected across global tropical reef
- âŠ