415 research outputs found

    Spatially explicit approach to estimation of total population abundance in field surveys.

    Get PDF
    Population abundance is fundamental in ecology and conservation biology, and provides essential information for predicting population dynamics and implementing conservation actions. While a range of approaches have been proposed to estimate population abundance based on existing data, data deficiency is ubiquitous. When information is deficient, a population estimation will rely on labor intensive field surveys. Typically, time is one of the critical constraints in conservation, and management decisions must often be made quickly under a data deficient situation. Hence, it is important to acquire a theoretical justification for survey methods to meet a required estimation precision. There is no such theory available in a spatially explicit context, while spatial considerations are critical to any field survey. Here, we develop a spatially explicit theory for population estimation that allows us to examine the estimation precision under different survey designs and individual distribution patterns (e.g. random/clustered sampling and individual distribution). We demonstrate that clustered sampling decreases the estimation precision when individuals form clusters, while sampling designs do not affect the estimation accuracy when individuals are distributed randomly. Regardless of individual distribution, the estimation precision becomes higher with increasing total population abundance and the sampled fraction. These insights provide theoretical bases for efficient field survey designs in information deficiency situations

    High-latitude marginal reefs support fewer but bigger corals than their tropical counterparts

    Get PDF
    Anthropogenic impacts are typically detrimental to tropical coral reefs, but the effect of increasing environmental stress and variability on the size structure of coral communities remains poorly understood. This limits our ability to effectively conserve coral reef ecosystems because size specific dynamics are rarely incorporated. Our aim is to quantify variation in the size structure of coral populations across 20 sites along a tropical-to-subtropical environmental gradient on the east coast of Australia (~ 23 to 30°S), to determine how size structure changes with a gradient of sea surface temperature, turbidity, productivity and light levels. We use two approaches: 1) linear regression with summary statistics (such as median size) as response variables, a method frequently favoured by ecologists and 2) compositional functional regression, a novel method using entire size–frequency distributions as response variables. We then predict coral population size structure with increasing environmental stress and variability. Together, we find fewer but larger coral colonies in marginal reefs, where conditions are typically more variable and stressful, than in tropical reefs. Our model predicts that coral populations may become gradually dominated by larger colonies (> 148 cm2) with increasing environmental stress. Fewer but bigger corals suggest low survival of smaller corals, slow growth, and/or poor recruitment. This finding is concerning for the future of coral reefs, as it implies that current marginal populations, or future reefs in increasingly stressful environmental conditions may have low recovery potential. We highlight the importance of continuously monitoring changes to population structure over biogeographic scales

    Adjoint bulk scalars and supersymmetric unification in the presence of extra dimensions

    Get PDF
    There are several advantages of introducing adjoint superfields at intermediate energies around M=1013M=10^{13} GeV. Such as (i) gauge couplings still unify (ii) neutrino masses and mixings are produced (iii) primordial lepton asymmetry can be produced. We point out that if adjoint scalars have bulk excitations along with gauge bosons whereas fermions and the doublet scalar live on boundary then N=2 supersymmetric beta functions bi~\tilde{b_i} vanish. Thus even if extra dimensions open up at an intermediate scale μ0\mu_0 and all N=2 Yang-Mills fields as well as N=2 matter fields in the adjoint representation propagate in the bulk, still gauge couplings renormalize beyond μ0\mu_0 just like they do in 4-dimensions with adjoint scalars. Consequently unification is achieved in the presence to extra dimensions, mass scales are determined uniquely via Renormalization Group Equations(RGE) and unification scale remains high enough to suppress proton decay. This scenario can be falsified if we get signatures of extra dimensions at low energy.Comment: New references added. This version will appear in Phys. Rev.

    Risk‐sensitive planning for conserving coral reefs under rapid climate change

    Get PDF
    Coral reef ecosystems are seriously threatened by changing conditions in the ocean. Although many factors are implicated, climate change has emerged as a dominant and rapidly growing threat. Developing a long‐term strategic plan for the conservation of coral reefs is urgently needed yet is complicated by significant uncertainty associated with climate change impacts on coral reef ecosystems. We use Modern Portfolio Theory to identify coral reef locations globally that, in the absence of other impacts, are likely to have a heightened chance of surviving projected climate changes relative to other reefs. Long‐term planning that is robust to uncertainty in future conditions provides an objective and transparent framework for guiding conservation action and strategic investment. These locations constitute important opportunities for novel conservation investments to secure less vulnerable yet well‐connected coral reefs that may, in turn, help to repopulate degraded areas in the event that the climate has stabilized

    Comparing spatial conservation prioritization methods with site versus spatial dependency‐based connectivity

    Get PDF
    Larval dispersal is an important component of marine reserve networks. Two conceptually different approaches to incorporate dispersal connectivity into spatial planning of these networks exist, and it is an open question as to when either is most appropriate. Candidate reserve sites can be selected individually based on local properties of connectivity or on a spatial dependency-based approach of selecting clusters of strongly connected habitat patches. The first acts on individual sites, whereas the second acts on linked pairs of sites. We used a combination of larval dispersal simulations representing different seascapes and case studies of biophysical larval dispersal models in the Coral Triangle region and the province of Southeast Sulawesi, Indonesia, to compare the performance of these 2 methods in the spatial planning software Marxan. We explored the reserve design performance implications of different dispersal distances and patterns based on the equilibrium settlement of larvae in protected and unprotected areas. We further assessed different assumptions about metapopulation contributions from unprotected areas, including the case of 100% depletion and more moderate scenarios. The spatial dependency method was suitable when dispersal was limited, a high proportion of the area of interest was substantially degraded, or the target amount of habitat protected was low. Conversely, when subpopulations were well connected, the 100% depletion was relaxed, or more habitat was protected, protecting individual sites with high scores in metrics of connectivity was a better strategy. Spatial dependency methods generally produced more spatially clustered solutions with more benefits inside than outside reserves compared with site-based methods. Therefore, spatial dependency methods potentially provide better results for ecological persistence objectives over enhancing fisheries objectives, and vice versa. Different spatial prioritization methods of using connectivity are appropriate for different contexts, depending on dispersal characteristics, unprotected area contributions, habitat protection targets, and specific management objectives. Comparación entre los métodos de priorización de la conservación espacial con sitio y la conectividad espacial basada en la dependenci

    Metabolomics enables precision medicine: “A White Paper, Community Perspective”

    Get PDF
    Introduction: Background to metabolomics: Metabolomics is the comprehensive study of the metabolome, the repertoire of biochemicals (or small molecules) present in cells, tissues, and body fluids. The study of metabolism at the global or “-omics” level is a rapidly growing field that has the potential to have a profound impact upon medical practice. At the center of metabolomics, is the concept that a person’s metabolic state provides a close representation of that individual’s overall health status. This metabolic state reflects what has been encoded by the genome, and modified by diet, environmental factors, and the gut microbiome. The metabolic profile provides a quantifiable readout of biochemical state from normal physiology to diverse pathophysiologies in a manner that is often not obvious from gene expression analyses. Today, clinicians capture only a very small part of the information contained in the metabolome, as they routinely measure only a narrow set of blood chemistry analytes to assess health and disease states. Examples include measuring glucose to monitor diabetes, measuring cholesterol and high density lipoprotein/low density lipoprotein ratio to assess cardiovascular health, BUN and creatinine for renal disorders, and measuring a panel of metabolites to diagnose potential inborn errors of metabolism in neonates. Objectives of White Paper—expected treatment outcomes and metabolomics enabling tool for precision medicine: We anticipate that the narrow range of chemical analyses in current use by the medical community today will be replaced in the future by analyses that reveal a far more comprehensive metabolic signature. This signature is expected to describe global biochemical aberrations that reflect patterns of variance in states of wellness, more accurately describe specific diseases and their progression, and greatly aid in differential diagnosis. Such future metabolic signatures will: (1) provide predictive, prognostic, diagnostic, and surrogate markers of diverse disease states; (2) inform on underlying molecular mechanisms of diseases; (3) allow for sub-classification of diseases, and stratification of patients based on metabolic pathways impacted; (4) reveal biomarkers for drug response phenotypes, providing an effective means to predict variation in a subject’s response to treatment (pharmacometabolomics); (5) define a metabotype for each specific genotype, offering a functional read-out for genetic variants: (6) provide a means to monitor response and recurrence of diseases, such as cancers: (7) describe the molecular landscape in human performance applications and extreme environments. Importantly, sophisticated metabolomic analytical platforms and informatics tools have recently been developed that make it possible to measure thousands of metabolites in blood, other body fluids, and tissues. Such tools also enable more robust analysis of response to treatment. New insights have been gained about mechanisms of diseases, including neuropsychiatric disorders, cardiovascular disease, cancers, diabetes and a range of pathologies. A series of ground breaking studies supported by National Institute of Health (NIH) through the Pharmacometabolomics Research Network and its partnership with the Pharmacogenomics Research Network illustrate how a patient’s metabotype at baseline, prior to treatment, during treatment, and post-treatment, can inform about treatment outcomes and variations in responsiveness to drugs (e.g., statins, antidepressants, antihypertensives and antiplatelet therapies). These studies along with several others also exemplify how metabolomics data can complement and inform genetic data in defining ethnic, sex, and gender basis for variation in responses to treatment, which illustrates how pharmacometabolomics and pharmacogenomics are complementary and powerful tools for precision medicine. Conclusions: Key scientific concepts and recommendations for precision medicine: Our metabolomics community believes that inclusion of metabolomics data in precision medicine initiatives is timely and will provide an extremely valuable layer of data that compliments and informs other data obtained by these important initiatives. Our Metabolomics Society, through its “Precision Medicine and Pharmacometabolomics Task Group”, with input from our metabolomics community at large, has developed this White Paper where we discuss the value and approaches for including metabolomics data in large precision medicine initiatives. This White Paper offers recommendations for the selection of state of-the-art metabolomics platforms and approaches that offer the widest biochemical coverage, considers critical sample collection and preservation, as well as standardization of measurements, among other important topics. We anticipate that our metabolomics community will have representation in large precision medicine initiatives to provide input with regard to sample acquisition/preservation, selection of optimal omics technologies, and key issues regarding data collection, interpretation, and dissemination. We strongly recommend the collection and biobanking of samples for precision medicine initiatives that will take into consideration needs for large-scale metabolic phenotyping studie

    Integrating climate adaptation and biodiversity conservation in the global ocean

    Get PDF
    The impacts of climate change and the socioecological challenges they present are ubiquitous and increasingly severe. Practical efforts to operationalize climate-responsive design and management in the global network of marine protected areas (MPAs) are required to ensure long-term effectiveness for safeguarding marine biodiversity and ecosystem services. Here, we review progress in integrating climate change adaptation into MPA design and management and provide eight recommendations to expedite this process. Climate-smart management objectives should become the default for all protected areas, and made into an explicit international policy target. Furthermore, incentives to use more dynamic management tools would increase the climate change responsiveness of the MPA network as a whole. Given ongoing negotiations on international conservation targets, now is the ideal time to proactively reform management of the global seascape for the dynamic climate-biodiversity reality
    corecore