18 research outputs found

    Point-of-Care Testing for Toxoplasma Gondii IgG/IgM Using Toxoplasma ICT IgG-IgM Test with Sera from the United States and Implications for Developing Countries

    Get PDF
    Background Congenital toxoplasmosis is a serious but preventable and treatable disease. Gestational screening facilitates early detection and treatment of primary acquisition. Thus, fetal infection can be promptly diagnosed and treated and outcomes can be improved. Methods We tested 180 sera with the Toxoplasma ICT IgG-IgM point-of-care (POC) test. Sera were from 116 chronically infected persons (48 serotype II; 14 serotype I-III; 25 serotype I-IIIa; 28 serotype Atypical, haplogroup 12; 1 not typed). These represent strains of parasites infecting mothers of congenitally infected children in the U.S. 51 seronegative samples and 13 samples from recently infected persons known to be IgG/IgM positive within the prior 2.7 months also were tested. Interpretation was confirmed by two blinded observers. A comparison of costs for POC vs. commercial laboratory testing methods was performed. Results We found that this new Toxoplasma ICT IgG-IgM POC test was highly sensitive (100%) and specific (100%) for distinguishing IgG/IgM-positive from negative sera. Use of such reliable POC tests can be cost-saving and benefit patients. Conclusions Our work demonstrates that the Toxoplasma ICT IgG-IgM test can function reliably as a point-of-care test to diagnose Toxoplasma gondii infection in the U.S. This provides an opportunity to improve maternal-fetal care by using approaches, diagnostic tools, and medicines already available. This infection has serious, lifelong consequences for infected persons and their families. From the present study, it appears a simple, low-cost POC test is now available to help prevent morbidity/disability, decrease cost, and make gestational screening feasible. It also offers new options for improved prenatal care in low- and middle-income countries

    The third data release of the Kilo-Degree Survey and associated data products

    Get PDF
    The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope. It aims to image 1500 square degrees in four filters (ugri). The core science driver is mapping the large-scale matter distribution in the Universe, using weak lensing shear and photometric redshift measurements. Further science cases include galaxy evolution, Milky Way structure, detection of high-redshift clusters, and finding rare sources such as strong lenses and quasars. Here we present the third public data release (DR3) and several associated data products, adding further area, homogenized photometric calibration, photometric redshifts and weak lensing shear measurements to the first two releases. A dedicated pipeline embedded in the Astro-WISE information system is used for the production of the main release. Modifications with respect to earlier releases are described in detail. Photometric redshifts have been derived using both Bayesian template fitting, and machine-learning techniques. For the weak lensing measurements, optimized procedures based on the THELI data reduction and lensfit shear measurement packages are used. In DR3 stacked ugri images, weight maps, masks, and source lists for 292 new survey tiles (~300 sq.deg) are made available. The multi-band catalogue, including homogenized photometry and photometric redshifts, covers the combined DR1, DR2 and DR3 footprint of 440 survey tiles (447 sq.deg). Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5 sigma in a 2 arcsec aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.7 arcsec. The photometric homogenization scheme ensures accurate colors and an absolute calibration stable to ~2% for gri and ~3% in u. Separately released are a weak lensing shear catalogue and photometric redshifts based on two different machine-learning techniques.Comment: small modifications; 27 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    Transcriptional Programs and Regeneration Enhancers Underlying Heart Regeneration

    No full text
    The heart plays the vital role of propelling blood to the entire body, which is essential to life. While maintaining heart function is critical, adult mammalian hearts poorly regenerate damaged cardiac tissue upon injury and form scar tissue instead. Unlike adult mammals, adult zebrafish can regenerate injured hearts with no sign of scarring, making zebrafish an ideal model system with which to study the molecular mechanisms underlying heart regeneration. Investigation of heart regeneration in zebrafish together with mice has revealed multiple cardiac regeneration genes that are induced by injury to facilitate heart regeneration. Altered expression of these regeneration genes in adult mammals is one of the main causes of heart regeneration failure. Previous studies have focused on the roles of these regeneration genes, yet the regulatory mechanisms by which the expression of cardiac regeneration genes is precisely controlled are largely unknown. In this review, we will discuss the importance of differential gene expression for heart regeneration, the recent discovery of cardiac injury or regeneration enhancers, and their impact on heart regeneration

    Protein nanovaccine confers robust immunity against Toxoplasma

    Get PDF
    We designed and produced a self-assembling protein nanoparticle (SAPN). This SAPN contains five CD8+ HLA-A03-11 supertypes-restricted epitopes from antigens expressed during Toxoplasma gondii’s lifecycle, the universal CD4+ T cell epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8+ T cell epitopes were separated by N/KAAA spacers and optimized for proteasomal cleavage. SAPN adjuvanted with TLR4 ligand-emulsion GLA-SE (SAPN-GLA-SE) were evaluated for their efficacy in inducing IFN-γ responses and protection of HLA-A*1101 transgenic mice against T. gondii. Immunization, using SAPN-GLA-SE, activated CD8+ T cells to produce IFN-γ. SAPN-GLA-SE also protected HLA- A*1101 transgenic mice against subsequent challenge with Type II parasites. Hence, combining CD8+ T cell-eliciting peptides and PADRE into a multi-epitope protein that forms a nanoparticle, administered with GLA-SE, leads to efficient presentation by MHC Class I and II molecules. Furthermore, these results suggest that activation of TLR4 and TLR5 could be useful for development of vaccines that elicit T cells to prevent toxoplasmosis in humans

    Toxoplasma modulates signature pathways of human epilepsy, neurodegeneration & cancer

    Get PDF
    One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases
    corecore