155 research outputs found

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Càncer de mama; Genètica del càncer; Factors de riscCáncer de mama; Genética del cáncer; Factores de riesgoBreast cancer; Cancer genetics; Risk factorsBreast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    Pancreatic Cancer Risk Stratification based on Patient Family History

    Get PDF
    poster abstractBackground: Pancreatic cancer is the fourth leading cause of cancer-related deaths in the US with an annual death rate approximating the incidence (38,460 and 45,220 respectively according to 2013 American Cancer Society). Due to delayed diagnosis, only 8% of patients are amenable to surgical resection, resulting in a 5-year survival rate of less than 6%. Screening the general population for pancreatic cancer is not feasible because of its low incidence (12.1 per 100,000 per year) and the lack of accurate screening tools. However, patients with an inherited predisposition to pancreatic cancer would benefit from selective screening. Methods: Clinical notes of patients from Indiana University (IU) Hospitals were used in this study. A Natural Language Processing (NLP) system based on the Unstructured Information Management Architecture framework was developed to process the family history data and extract pancreatic cancer information. This was performed through a series of NLP processes including report separation, section separation, sentence detection and keyword extraction. The family members and their corresponding diseases were extracted using regular expressions. The Stanford dependency parser was used to accurately link the family member and their diseases. Negation analysis was done using the NegEx algorithm. PancPro risk-prediction software was used to assess the lifetime risk scores of pancreatic cancer for each patient according to his/her family history. A decision tree was constructed based on these scores. Results: A corpus of 2000 reports of patients at IU Hospitals from 1990 to 2012 was collected. The family history section was present in 249 of these reports containing 463 sentences. The system was able to identify 222 reports (accuracy 87.5%) and 458 sentences (accuracy 91.36%). Conclusion: The family history risk score will be used for patients’ pancreatic cancer risk stratification, thus contributing to selective screening

    Pancreatic Cysts Identification Using Unstructured Information Management Architecture

    Get PDF
    poster abstractPancreatic cancer is one of the deadliest cancers, mostly diagnosed at late stages. Patients with pancreatic cysts are at higher risk of developing cancer and surveillance of these patients can help with early diagnosis. Much information about pancreatic cysts can be found in free text format in various medical narratives. In this retrospective study, a corpus of 1064 records from 44 patients at Indiana University Hospital from 1990 to 2012 was collected. A natural language processing system was developed and used to identify patients with pancreatic cysts. The input goes through series of tasks within the Unstructured Information Management Architecture (UIMA) framework consisting of report separation, metadata detection, sentence detection, concept annotation and writing into the database. Metadata such as medical record number (MRN), report id, report name, report date, report body were extracted from each report. Sentences were detected and concepts within each sentence were extracted using regular expression. Regular expression is a pattern of characters matching specific string of text. Our medical team assembled concepts that are used to identify pancreatic cysts in medical reports and additional keywords were added by searching through literature and Unified Medical Language System (UMLS) knowledge base. The Negex Algorithm was used to find out negation status of concepts. The 1064 reports were divided into sets of train and test sets. Two pancreatic-cyst surgeons created the gold standard data (Inter annotator agreement K=88%). The training set was analyzed to modify the regular expression. The concept identification using the NegEx algorithm resulted in precision and recall of 98.9% and 89% respectively. In order to improve the performance of negation detection, Stanford Dependency parser (SDP) was used. SDP finds out how words are related to each other in a sentence. SDP based negation algorithm improved the recall to 95.7%

    Identification of Patients with Family History of Pancreatic Cancer - Investigation of an NLP System Portability

    Get PDF
    In this study we have developed a rule-based natural language processing (NLP) system to identify patients with family history of pancreatic cancer. The algorithm was developed in a Unstructured Information Management Architecture (UIMA) framework and consisted of section segmentation, relation discovery, and negation detection. The system was evaluated on data from two institutions. The family history identification precision was consistent across the institutions shifting from 88.9% on Indiana University (IU) dataset to 87.8% on Mayo Clinic dataset. Customizing the algorithm on the the Mayo Clinic data, increased its precision to 88.1%. The family member relation discovery achieved precision, recall, and F-measure of 75.3%, 91.6% and 82.6% respectively. Negation detection resulted in precision of 99.1%. The results show that rule-based NLP approaches for specific information extraction tasks are portable across institutions; however customization of the algorithm on the new dataset improves its performance

    DEEPEN: A negation detection system for clinical text incorporating dependency relation into NegEx

    Get PDF
    In Electronic Health Records (EHRs), much of valuable information regarding patients’ conditions is embedded in free text format. Natural language processing (NLP) techniques have been developed to extract clinical information from free text. One challenge faced in clinical NLP is that the meaning of clinical entities is heavily affected by modifiers such as negation. A negation detection algorithm, NegEx, applies a simplistic approach that has been shown to be powerful in clinical NLP. However, due to the failure to consider the contextual relationship between words within a sentence, NegEx fails to correctly capture the negation status of concepts in complex sentences. Incorrect negation assignment could cause inaccurate diagnosis of patients’ condition or contaminated study cohorts. We developed a negation algorithm called DEEPEN to decrease NegEx’s false positives by taking into account the dependency relationship between negation words and concepts within a sentence using Stanford dependency parser. The system was developed and tested using EHR data from Indiana University (IU) and it was further evaluated on Mayo Clinic dataset to assess its generalizability. The evaluation results demonstrate DEEPEN, which incorporates dependency parsing into NegEx, can reduce the number of incorrect negation assignment for patients with positive findings, and therefore improve the identification of patients with the target clinical findings in EHRs
    • …
    corecore