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ABSTRACT: Nanoparticles can be used to transport a variety of 

biological cargoes into eukaryotic cells. Polypeptides provide a 

versatile material for constructing such systems. Previously, we 

have assembled nanoscale peptide cages (SAGEs) from de novo 

designed coiled-coil modules.  Here, we show that the modules can 

be extended with short charged peptides to alter endocytosis of the 

assembled SAGE particles by cultured human cells in a tunable 

fashion.  First, we find that the peptide extensions affect coiled-coil 

stability predictably: N-terminal polylysine and C-terminal poly-

glutamate tags are destabilizing; whereas, the reversed arrange-

ments have little impact.  Second, the cationic assembled particles 

are internalized faster and to greater extents by cells than the parent 

SAGEs.  By contrast, anionic decorations markedly inhibit both as-

pects of uptake. These studies highlight how the modular SAGE 

system facilitates rational peptide design to fine-tune the bioactiv-

ity of nanoparticles, which should allow engineering of tailored 

cell-delivery vehicles. 

Keywords: de novo peptide, coiled coil, self-assembly, na-

noparticle, cellular internalization  

A wide variety of nanoparticles have been shown to be internal-

ized by eukaryotic cells. These range from hard inorganic nanopar-

ticles, through polymer-based systems, to self-assembled peptide- 

and protein-based cages.1 Such nanoparticles have been developed 

for various applications at the biointerface, particularly for the de-

livery of therapeutic and diagnostic agents.2 Within these ap-

proaches, soft polypeptide-based nanoparticles are emerging as ex-

citing new materials due to advances in polypeptide design and en-

gineering, and their potential biocompatibility and monodisper-

sity.3 These systems can be classified into three broad categories: 

modified natural assemblies, including enzyme cages and viral cap-

sids;4 self-assembled protein cages assembled using engineered 

proteins;5 and nanoparticles and cages assembled from de novo-de-

signed peptides.6 While natural systems often offer robust scaffolds 

for nanoparticle development, completely de novo cage-like assem-

blies have the potential to provide considerable control over bio-

physical properties with their improved tractability.7 Furthermore, 

recent advances in computational protein design and high resolu-

tion structural techniques now allow the precise design and charac-

terization of such assemblies.8 Although bioactive cargo delivery 

to eukaryotic cells is well established with repurposed natural 

cages, the use of designed systems is only just being realized.9 

 Recently, we have described the design, assembly and 

characterization of self-assembled peptide nanocages (SAGEs) 

built with two components from a toolkit of de novo designed 

coiled-coil peptides.10 Briefly, the two chains of a heterodimeric 

coiled coil (CC-Di-AB) are individually linked to a homotrimeric 

peptide (CC-Tri3) through disulfide bonds on their solvent-

exposed faces (Figure 1A). Upon mixing, these “hub” peptide 

conjugates associate via the formation of the heterodimers into a 

hexagonal lattice that closes to yield quasi-spherical objects. 

Molecular dynamics simulations suggest that the SAGE lattice 

closes leading to presentation of the N termini of the CC-Tri3 

peptides on the exterior face of the assembly.10b Coarse-grained 

simulations of hub association and the biomineralization of silica 

onto the SAGE surface provide further detail and understanding of 

the lattice assembly and structure.11 In addition, the modular nature 

of the SAGE design has allowed the incorporation of multiple 

protein cargoes within particles and to different loading densities.12 

Here, we build on this work to develop SAGE particles for tunable 

Figure 1. Schematics of SAGE assembly and example composi-

tions. (A) CC-Tri3 (green) is coupled to CC-Di-A (red) and CC-Di-

B (blue) to form Hub-A and Hub-B, respectively. When mixed, 

these peptides assemble through heterodimer association to form a 

hexagonal lattice that closes to form SAGE particles. (B) SAGE 

compositions employed in this study where green asterisk indicates 

the presence of Alexa Fluor 488 and blue and red halos represent a 

cationic or anionic surface charge, respectively. 
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biointerfacing through the systematic modification of their 

surfaces. 

 It is widely accepted that surface charge alters the interactions 

of nanoparticles with cells and their subsequent internalization.13 

To explore this concept in the SAGE system, a series of CC-Tri3 

variants was synthesized bearing 1, 2 or 4 positively charged lysine 

(Lys) or negatively charged glutamic acid (Glu) residues at the N 

or C terminus (Table S1). When assembled into SAGE particles, 

these components should present increasing amounts of positive or 

negative charge at the particle exterior (N-terminal) or interior (C-

terminal) according to our working model for SAGE assembly. We 

used solution-phase biophysical methods to characterize the CC-

Tri3 variants, along with two uncharged control peptides: G4-CC-

Tri3 and CC-Tri3-G4. 

By circular dichroism (CD) spectroscopy, all peptides were 

found to be α helical at 5 °C and underwent cooperative unfolding 

upon heating (Figures S4 & S5). Moreover, like CC-Tri3, all of the 

tetrapeptide-labelled peptides were trimeric in solution by analyti-

cal ultracentrifugation (Figure S6).  The fraction helix (FH) and 

midpoint temperature of thermal unfolding (TM) values were ex-

tracted from the CD data and used for the following comparative 

analysis. 

At the N terminus, the introduction of a control tetraglycine ex-

tension led to a loss in overall helicity, which stands to reason as 

the extension is expected to be unfolded (Figure 2A). The TM was 

unaffected, confirming that this modification did not perturb the 

folded coiled-coil assembly (Figure 2B). Similarly, the addition of 

increasing numbers of Glu residues gave progressively lower he-

licities and affected the TM minimally (Figures 2A & B); if any-

thing, the modified peptides were slightly more stable than the par-

ent.  Again, we interpret this as the Glu extensions being largely 

unfolded and having little impact on the structure and stability of 

the core homotrimer. Interestingly, and by contrast, increasing Lys 

extensions markedly and proportionally reduced both the helicities 

and the thermal stabilities of the peptides (Figures 2A & B).  The 

loss of helicity was more than expected for an unfolded extension, 

and the K4-CC-Tri3 peptide was some 20 ˚C less stable than G4-

CC-Tri3. 

The correlations were reversed for the analogous C-terminal 

modifications: Lys extensions of increasing length reduced peptide 

helicity no more than expected from the CC-Tri3-G4 control, and 

they perturbed the TM only marginally (Figure 2C & D). However, 

additional Glu residues led to far greater decreases in helicity and 

thermal stability, and these were proportional to length of the ex-

tension. Interestingly, the FH and TM values of CC-Tri3-E4 and 

K4-CC-Tri3 were similar; i.e., both are destabilized to similar ex-

tents.  

These data seem best explained as follows: the introduction of 

short charged peptides to the termini of monomeric α-helical pep-

tides is known to affect helicity and stability.14  Specifically, for 

such stand-alone helices, proximal anionic and cationic side chains 

stabilize partial positive and negative charges at the N and C ter-

mini, respectively. The switched arrangements are destabilizing.  

The findings presented herein extend this view to coiled coil-based 

peptide oligomers.  Moreover, in the coiled-coil systems it appears 

that potential inter-helical side-chain repulsions between the exten-

sions are tolerated, but only when the side chain-main chain inter-

actions are favorable. We suggest that such sequence features and 

electrostatics interactions are taken into account when designing or 

engineering supramolecular polypeptide assemblies such as the 

SAGEs. 

Next, we used the CC-Tri3 variants to construct new hubs for 

SAGE assembly. The N-terminally extended peptides were coupled 

to CC-Di-B to form Hub-B variants that should present the charged 

extensions at the external face of an assembled SAGE (Table S2). 

In addition, we made a variant of CC-Tri3 with a pendant Alexa 

Fluor 488  located near the C terminus to allow direct detection of 

SAGE particles (Table S1). This was coupled to CC-Di-A to form 

the fluorescently labelled hub peptide Hub-A488. The introduction 

of the fluorophore slightly increased the stability of the CC-Tri3 

peptide (Figure S8) and did not affect assembly into SAGEs (Fig-

ure S9). By combining decorated and non-decorated hub peptides, 

a range of SAGE compositions carrying different surface charges 

Figure 2. Biophysical characterization of SAGE components and 

particles. (A – D) Mono-, di- and tetrapeptide extensions of Lys 

(blue) and Glu (red) were introduced at the N (A & B) and C (C & 

D) termini of CC-Tri3. CC-Tri3 (grey), G4-CC-Tri3 (A & B; 

green) and CC-Tri3-G4 (C & D; green) were also analyzed. Frac-

tion helix and TM were determined by CD spectroscopy. Condi-

tions: 50 μM peptide, 250 μM tris(2-carboxyethyl)phosphine 

(TCEP), phosphate-buffered saline (PBS). Points show statistical 

mean ± standard deviation (n = 3). (E – H) Representative scanning 

electron micrographs (scale bars: 500 nm) and particle sizing with 

Gaussian fit of K4-SAGE (E & G) and E4-SAGE (F & H). Gauss-

ian fit of SAGE (92.0 ± 14 nm) shown in grey (G & H). Conditions: 

50 μM peptide, HEPES-buffered saline (HBS). 
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and the small-molecule dye was assembled (Figure 1B & Table 

S3). 

 The impact of peptide decorations on SAGE morphology was 

assessed by scanning electron microscopy (SEM; Figures 2E & F 

& S9). All modified SAGEs had quasi-spherical morphologies 

similar to the parent SAGE particles, indicating that the decorations 

did not markedly affect SAGE assembly. However, the average 

particle diameters were reduced by 12 – 21 nm across the 

compositions compared with the parents. One possible explanation 

for this is that N-terminally displayed charged residues further 

promote the anticipated wedge shapes of the hubs leading to higher 

radii of curvature and smaller particles. This is consistent with our 

working model for SAGE assembly and structure.10b 

We tested how the decorated SAGE particles interacted with 

mammalian cells in culture. Neither the de novo component pep-

tides nor the assembled particles were cytotoxic to HeLa cells over 

24 h (Figure S10). Fluorescent SAGE488 particles were then intro-

duced to HeLa cells for 2 h and visualized by confocal microscopy. 

Fluorescence was observed within the limits of the actin cytoskel-

eton revealing that SAGEs had been internalized without the need 

for specific functionalization (Figure 3B & S11). The punctate in-

tracellular distribution is indicative of active internalization by en-

docytosis and not direct penetration across the membrane, which 

would result in disperse fluorescence throughout the cytosol.15 

SAGE488 internalization was found to be completely inhibited at 4 

°C and dramatically reduced at 20 °C, strongly supporting energy-

dependent endocytic uptake (Figure S12). Further studies are un-

derway to determine the specific mechanism(s) of SAGE endocy-

tosis. 

To investigate the impact of SAGE surface charge on the rate 

and efficiency of endocytosis, the charged Hub-B variants were 

used to assemble a series of fluorescent SAGEs with varying sur-

face charges (Table S3). All particles entered the cytoplasm in a 

temperature-dependent manner and gave similar punctate distribu-

tions (Figure S12). However, the intracellular load was affected 

dramatically by surface electrostatics: positive charge gave greater 

accumulation and negative charge impeded uptake (Figures 3C & 

D & S13). Furthermore, there was a dose response for the anionic 

particles, with increasing negative charge lowering the intracellular 

load, but no response for an increasingly cationic particle surface. 

Next, we quantified SAGE uptake temporally across the entire 

cell population using flow cytometry (Figure 3E & F). The data 

were analyzed in two ways (see Methods): the proportion of cells 

that tested positive for SAGE fluorescence indicated the initial 

events of SAGE uptake; and the GeoMean gave the average intra-

cellular loads across the populations. These analyses corroborated 

the confocal imaging and revealed that a single positive charge on 

50 % of the hub peptides is sufficient to maximize the efficiency of 

endocytosis. The addition of a single Glu residue did not alter up-

take, but presentation of the E2 and E4 motifs reduced the internal-

ization rate proportionally to the extension length. These effects on 

uptake are presumably due to the electrostatic interactions between 

the SAGE particle and the negatively charged cell membrane. 

We also investigated the influence of tetralysine or tetragluta-

mate extensions at the C terminus of CC-Tri3 (Figure S14 & Table 

S3). These SAGE-K4488 and SAGE-E4488 particles were internal-

ized at rates and resulted in intracellular distributions similar to 

their respective N-terminal analogues. Thus, overall charge on the 

SAGE particles is the discriminating factor rather than its precise 

placement within the peptide components. 

Collectively, the uptake profiles of the N-terminally decorated 

SAGE compositions suggest that internalization rate can be con-

trolled with surface charge. However, only a limited range of sur-

face charges (and, consequently, uptake efficiencies) are accessible 

by extending charged residues from CC-Tri3. Therefore, we tested 

if the modularity of the SAGE system could be exploited to more 

precisely control surface charge and tune the rate of endocytosis. 

To do this, we assembled four additional SAGE compositions car-

rying 12.5 or 25 % of K4-Hub-B or E4-Hub-B (Table S3). These 

compositions should carry the same surface charge as K1-, K2-, 

E1- and E2-SAGE488, respectively, but in a different distribution 

across each particle. After a 2 h exposure, the four new composi-

tions were found as puncta within HeLa cells by confocal micros-

copy with similar distributions to the respective one- and two-

amino acid modified particles (Figure S15A – F). However, flow 

cytometry revealed clear differences in uptake between the two 

compositional preparations (Figure S15G & H), which are com-

pared in Figure 4 and described as follows. 

Figure 3. SAGE internalization by HeLa cells and the impact of 

surface electrostatics. (A – D) Representative confocal microscopy 

images of HeLa cells after 2 h exposure to no SAGE (A), SAGE488 

(B), K4-SAGE488 (C) or E4-SAGE488 (D).  SAGE particles are col-

ored green and cells were labeled for F-actin (red; Alexa Fluor 594 

Phalloidin) and nuclei (blue; DAPI). Scale bars: 10 μm. (E & F) 

Flow cytometry analysis of internalization of SAGE particles by 

HeLa cells, showing the percentage of cells counted as SAGE pos-

itive (E) and the population GeoMean (F). Key: SAGE488 (grey), 

K1-SAGE488 (blue; dotted, crosses), K2-SAGE488 (blue; dashed, 

triangles), K4-SAGE488 (blue; solid, squares) E1-SAGE488 (red; 

dotted, crosses), E2-SAGE488 (red; dashed, triangles), and E4-

SAGE488 (red; solid, squares). Points show statistical mean ± stand-

ard deviation (n = 3). 
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 As stated above, the introduction of K1, K2 or K4 maximizes 

uptake, while the introduction of Glu residues reduces internaliza-

tion proportionately to amount of introduced charge. However, 

when component stoichiometry is altered to control this charge, the 

endocytosis of SAGE particles is affected more subtly across the 

entire range of surface charges and therefore the efficiency of up-

take can be more precisely selected. More specifically, altering sur-

face charge through component stoichiometry provides finer con-

trol than through component alteration. This can be seen by com-

paring the shapes of the response to charge: when charge is altered 

by varying extension length, the plot effectively comprises two 

straight lines (Figure 4A); whereas, with the stoichiometric method 

the plot is more sigmoidal (Figure 4B). 

In summary, we have shown that the component peptides and 

hubs of a de novo designed self-assembling peptide cage (SAGE) 

system can be embellished with linear peptide extensions and dec-

orated by small molecules.10b These modifications do affect peptide 

structure and stability, but in predictable ways. The modified pep-

tides can be incorporated into the hubs, which, in turn, assemble 

competently into SAGEs without affecting particle morphology.  

SAGE particles are endocytosed by mammalian cells and the effi-

ciency of this uptake can be modulated by altering the electrostatic 

charge on the particle exterior: introducing positive charges en-

hances uptake, and negative charge reduces it.  Altering surface 

charge by changing the stoichiometry of tetrapeptide-labelled var-

iants brings more control to the system than modifying the compo-

nent peptides with increasing numbers of charged residues. This 

highlights the value of modularity in self-assembly as employed in 

the SAGE system.10b By using this approach to control surface 

charge, the efficiency of internalization by mammalian cells is con-

trolled in a manner hitherto unreported for other proteinaceous na-

noparticle systems.9a Thus, this study lays the foundation for devel-

oping more-sophisticated SAGE and SAGE-like systems bearing 

functional decoration to provide cell-specific targeting and to port 

bioactive cargoes into cells. The endocytic pathways responsible 

for SAGE internalization are being investigated to explore further 

the potential of using SAGE particles to deliver such cargoes into 

cells and to traffic them within cells.  
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