22 research outputs found
Deconstructing Insight: EEG Correlates of Insightful Problem Solving
Background:
Cognitive insight phenomenon lies at the core of numerous discoveries. Behavioral research indicates four salient features of insightful problem solving: (i) mental impasse, followed by (ii) restructuring of the problem representation, which leads to (iii) a deeper understanding of the problem, and finally culminates in (iv) an “Aha!” feeling of suddenness and obviousness of the solution. However, until now no efforts have been made to investigate the neural mechanisms of these constituent features of insight in a unified framework.
Methodology/Principal Findings:
In an electroencephalographic study using verbal remote associate problems, we identified neural correlates of these four features of insightful problem solving. Hints were provided for unsolved problems or after mental impasse. Subjective ratings of the restructuring process and the feeling of suddenness were obtained on trial-by-trial basis. A negative correlation was found between these two ratings indicating that sudden insightful solutions, where restructuring is a key feature, involve automatic, subconscious recombination of information. Electroencephalogram signals were analyzed in the space×time×frequency domain with a nonparametric cluster randomization test. First, we found strong gamma band responses at parieto-occipital regions which we interpreted as (i) an adjustment of selective attention (leading to a mental impasse or to a correct solution depending on the gamma band power level) and (ii) encoding and retrieval processes for the emergence of spontaneous new solutions. Secondly, we observed an increased upper alpha band response in right temporal regions (suggesting active suppression of weakly activated solution relevant information) for initially unsuccessful trials that after hint presentation led to a correct solution. Finally, for trials with high restructuring, decreased alpha power (suggesting greater cortical excitation) was observed in right prefrontal area.
Conclusions/Significance:
Our results provide a first account of cognitive insight by dissociating its constituent components and potential neural correlates
Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary
Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water
environments, and is often attributed to anthropogenic nutrient enrichment from
terrestrial-fluvial pathways. However, recent events in the U.S. Pacific
Northwest have highlighted that wind-forced upwelling can cause naturally
occurring low DO water to move onto the continental shelf, leading to
mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific
Northwest are strongly linked to ocean forcings, and here we report observations
on the spatial and temporal patterns of oxygen concentration in the Columbia
River estuary. Hydrographic measurements were made from transect (spatial
survey) or anchor station (temporal survey) deployments over a variety of wind
stresses and tidal states during the upwelling seasons of 2006 through 2008.
During this period, biologically stressful levels of dissolved oxygen were
observed to enter the Columbia River estuary from oceanic sources, with minimum
values close to the hypoxic threshold of 2.0 mg L−1. Riverine
water was consistently normoxic. Upwelling wind stress controlled the timing and
magnitude of low DO events, while tidal-modulated estuarine circulation patterns
influenced the spatial extent and duration of exposure to low DO water. Strong
upwelling during neap tides produced the largest impact on the estuary. The
observed oxygen concentrations likely had deleterious behavioral and
physiological consequences for migrating juvenile salmon and benthic crabs.
Based on a wind-forced supply mechanism, low DO events are probably common to
the Columbia River and other regional estuaries and if conditions on the shelf
deteriorate further, as observations and models predict, Pacific Northwest
estuarine habitats could experience a decrease in environmental quality
Integration Methods for Molecular Dynamics
Classical molecular dynamics simulation of a macromolecule requires the use of an efficient time-stepping scheme that can faithfully approximate the dynamics over many thousands of timesteps. Because these problems are highly nonlinear, accurate approximation of a particular solution trajectory on meaningful time intervals is neither obtainable nor desired, but some restrictions, such as symplecticness, can be imposed on the discretization which tend to imply good long term behavior. The presence of a variety of types and strengths of interatom potentials in standard molecular models places severe restrictions on the timestep for numerical integration used in explicit integration schemes, so much recent research has concentrated on the search for alternatives that possess (1) proper dynamical properties, and (2) a relative insensitivity to the fastest components of the dynamics. We survey several recent approaches