3,355 research outputs found

    Condensing Nielsen-Olesen strings and the vortex-boson duality in 3+1 and higher dimensions

    Get PDF
    The vortex-boson (or Abelian-Higgs, XY) duality in 2+1 dimensions demonstrates that the quantum disordered superfluid is equivalent to an ordered superconductor and the other way around. Such a duality structure should be ubiquitous but in 3+1 (and higher) dimensions a precise formulation of the duality is lacking. The problem is that the topological defects become extended objects, strings in 3+1D. We argue how the condensate of such vortex strings must behave from the known physics of the disordered superfluid, namely the Bose-Mott insulator. A flaw in earlier proposals is repaired, and a more direct viewpoint, avoiding gauge fields, in terms of the physical supercurrent is laid out, that also easily generalizes to higher-dimensional and more complicated systems. Furthermore topological defects are readily identified; we demonstrate that the Bose-Mott insulator supports line defects, which may be seen in cold atom experiments.Comment: LaTeX, 25 pages, 5 figures; several revisions and addition

    Transport properties of microstructured ultrathin films of La0.67Ca0.33MnO3 on SrTiO3

    Get PDF
    We have investigated the electrical transport properties of 8 nm thick La0.67Ca0.33MnO3 films, sputter-deposited on SrTiO3 (STO), and etched into 5 micrometer-wide bridges by Ar-ion etching. We find that even slight overetching of the film leads to conductance of the STO substrate, and asymmetric and non-linear current-voltage (I-V) characteristics. However, a brief oxygen plasma etch allows full recovery of the insulating character of the substrate. The I-V characteristics of the bridges are then fully linear over a large range of current densities. We find colossal magnetoresistance properties typical for strained LCMO on STO but no signature of non-linear effects (so-called electroresistance) connected to electronic inhomogeneites. In the metallic state below 150 K, the highest current densities lead to heating effects and non-linear I-V characteristics.Comment: 3 pages, 5 figure

    Deconfining the rotational Goldstone mode: the superconducting nematic liquid crystal in 2+1D

    Get PDF
    The Goldstone theorem states that there should be a massless mode for each spontaneously broken symmetry generator. There is no such rotational mode in crystals, however superconducting quantum nematics should carry rotational Goldstone modes. By generalization of thermal 2D defect mediated melting theory into a 2+1D quantum duality, the emergence of the rotational mode at the quantum phase transition from the solid to the nematic arises as a deconfinement phenomenon, with the unusual property that the stiffness of the rotational mode originates entirely in the dual dislocation condensate.Comment: 5 page

    Charged and neutral fixed points in the O ( N ) ⊕ O ( N ) model with Abelian gauge fields

    Get PDF
    In the Abelian-Higgs model, or Ginzburg-Landau model of superconductivity, the existence of an infrared stable charged fixed point ensures that there is a parameter range where the superconducting phase transition is second order, as opposed to fluctuation-induced first order as one would infer from the Coleman-Weinberg mechanism. We study the charged and neutral fixed points of a two-field generalization of the Abelian-Higgs model, where two N-component fields are coupled to two gauge fields and to each other, using the functional renormalization group. Focusing mostly on three dimensions, in the neutral case, this is a model for two-component Bose-Einstein condensation, and we confirm the fixed-point structure established in earlier works using different methods. The charged model is a dual theory of two-dimensional dislocation-mediated quantum melting. We find the existence of three charged fixed points for all N>2, while there are additional fixed points for N=2.Comment: RevTeX. 14 pages, 4 figures. Matches published versio
    • …
    corecore