4,406 research outputs found

    Overview geotechnical model tests on dike safety at Deltares

    Get PDF
    Three on-going dike safety studies (on: macro stability, piping and flow slides) in the Netherlands make use of geotechnical physical models. A short outline of these projects is presented; the physical models chosen are described and discussed. The three studies use different physical models, depending on the research questions at the beginning of the model test series, the heterogeneity that is anticipated in the field, the scaling laws and the knowledge level. The paper describes why a certain model was chosen

    Nutrient loss pathways from grazed grasslands and the effects of decreasing inputs: experimental results for three soil types

    Get PDF
    Agriculture is a main contributor of diffuse emissions of N and P to the environment. For N the main loss pathways are NH3-volatilization, leaching to ground and surface water and N-2(O) emissions. Currently, imposing restraints on farm inputs are used as policy tool to decrease N and P leaching to ground water and to surface water, and the same measure is suggested to combat emissions of N2O. The response, however, to these measures largely depends on the soil type. In this study nutrient flows of three dairy farms in The Netherlands with comparable intensity on sand, peat and clay soils were monitored for at least 2 years. The first aim was to provide quantitative data on current nutrient loss pathways. The second aim was to explore the responses in partitioning of the nutrient loss pathways when farm inputs were altered. Mean denitrification rates ranged from 103 kg N ha(-1) year(-1) for the sandy soil to 170 kg N ha(-1) year(-1) for the peat soil and leaching to surface water was about 73 kg N ha(-1) year(-1) for the sandy soil, 15 kg N ha(-1) year(-1) for the clay soil and 38 kg N ha(-1) year(-1) for the peat soil. For P, leaching to surface water ranged from 2 kg P ha(-1) year(-1) for the sandy site to 5 kg P ha(-1) year(-1) for the peat site. The sandy soil was most responsive to changes in N surpluses on leaching to surface water, followed by the peat soil and least responsive was the clay soil. For P, a similar sequence was found. This article demonstrates that similar reductions of N and P inputs result in different responses in N and P loss pathways for different soil types. These differences should be taken into account when evaluating measures to improve environmental performance of (dairy) farm

    Physics of Living Matter

    Get PDF

    Comparison of cell-surface glycoproteins of rat hepatomas and embryonic rat liver.

    Get PDF
    Cell-surface glycoprotein of 3 rat hepatoma strains and late-embryonic liver was metabolically labelled in vivo with [3H]- or [14C]-fucose. Trypsinization of the cells and exhaustive pronase digestion of combined hepatoma-liver trypsinates followed by gel filtration over Sephadex-Biogel mixtures, yielded elution profiles that contained more early-eluting (high-mol.-wt.) glycopeptides for hepatomas than for liver. At least 3 factors were identified which acted to augment the fraction of early-eluting tumour glycopeptides: (a) increase of neuraminidase-sensitive sialic acid, (b) increase of neuraminidase-insensitive sialic acid that was sensitive to mild HCl hydrolysis, and (c) presence of sugar sulphate groups contributing to a restricted extent, relative to possible unknown factor(s). Whether (a), (b) or (c) operated depended on the hepatoma strain or its mode of growth. Notwithstanding these differences in the nature of the increase in early-eluting glycopeptides, the increase itself appears not to be due to growth per se, nor to an embryonic expression, but rather may serve as a marker of tumourigenicity
    • …
    corecore