11 research outputs found

    Large-scale association analyses identify host factors influencing human gut microbiome composition

    Get PDF
    To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 x 10(-8)) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 x 10(-20)), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 x 10(-10) < P < 5 x 10(-8)) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis

    Cyclic variations in incubation conditions induce adaptive responses to later heat exposure in chickens: a review

    Full text link
    peer reviewedSelection programs have enabled broiler chickens to gain muscle mass without similar enlargement of the cardiovascular and respiratory systems that are essential for thermoregulatory efficiency. Meat-type chickens cope with high ambient temperature by reducing feed intake and growth during chronic and moderate heat exposure. In case of acute heat exposure, a dramatic increase in morbidity and mortality can occur. In order to alleviate heat stress in the long term, research has recently focused on early thermal manipulation. Aimed at stimulation of long-term thermotolerance, the thermal manipulation of embryos is a method based on fine tuning of incubation conditions, taking into account the level and duration of increases in temperature and relative humidity during a critical period of embryogenesis. The consequences of thermal manipulation on the performance and meat quality of broiler chickens have been explored to ensure the potential application of this strategy. The physiological basis of the method is the induction of epigenetic and metabolic mechanisms that control body temperature in the long term. Early thermal manipulation can enhance poultry resistance to environmental changes without much effect on growth performance. This review presents the main strategies of early heat exposure and the physiological concepts on which these methods were based. The cellular mechanisms potentially underlying the adaptive response are discussed as well as the potential interest of thermal manipulation of embryos for poultry production. © The Animal Consortium 2014

    Large-scale association analyses identify host factors influencing human gut microbiome composition

    No full text
    To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 x 10(-8)) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 x 10(-20)), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 x 10(-10) < P < 5 x 10(-8)) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis

    Large-scale association analyses identify host factors influencing human gut microbiome composition

    No full text
    Item does not contain fulltextTo study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10(-8)) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10(-20)), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10(-10) < P < 5 × 10(-8)) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis
    corecore