445 research outputs found

    Particle Image Thermometry for Natural Convection Flows

    Get PDF
    Particle Image Thermometry (PIT) is a technique by which temperature fields can be obtained non-invasively using thermochromic liquid crystals (TLCs) through image processing of experimental true-colour photographs. This is done using a calibration curve (hue versus temperature). With the calibration data, every pixel of the colour photograph is transformed to a temperature value, and thus accurate experimental temperature maps are obtained. Using this technique, examples of steady and unsteady natural convection are presented, which include steady magnetic convection of paramagnetic fluids in a cubic enclosure heated and cooled from opposite walls, and unsteady convective flows in a reservoir model cooled from above (night-time cooling). The instantaneous measurement of temperature fields is very useful for understanding flow characteristics in situations where conventional flow visualisation is not sufficient. This method also provides additional quantitative information for comparisons with numerical modelling

    How expensive space-zero-gravity convection experiments can be carried out in terrestrial conditions – magnetic convection of a paramagnetic fluid

    Get PDF
    Over the last decade or so it has became possible to build high-temperature super-conducting magnets that operate in a laboratory environment. Many new phenomena connected with strong magnetic fields have been reported (e.g. promotion of combustion, magnetic levitation, separation methods for weakly magnetic materials etc.). There are many applications of the use of magnetic force on the Earth. For instance, knowing how to control such a force makes it possible to negate the influence of the gravitational force and study a particular phenomenon as it would occur in the Cosmos, but under terrestrial conditions, avoiding the need for expensive space travel. The use of a magnetic field may also help in many processes such as crystal growth, mixing and material processing. The present work is concerned with magnetic convection of a paramagnetic fluid in a cubical enclosure heated and cooled from the sidewalls. The influence of a 10-T magnetic field on the convection mode of the paramagnetic fluid and the heat transfer rate were investigated numerically and experimentally, and compared with gravitational natural convection. The present study clearly shows that natural convection can be enhanced, and the direction of the convection flow can be changed using a strong magnetic field in terrestrial conditions

    Triple coalescence singularity in a dynamical atomic process

    Full text link
    We show that the high energy limit for the amplitude of the double electron capture to the bound state of the Coulomb field of a nucleus with emission of a single photon is determined by behavior of the wave function in the vicinity of the singular triple coalescence point.Comment: 3 page

    Does flooding effect the apparent survival and body condition of a ground foraging migrant passerine?

    Get PDF
    Abstract Natural disturbances play a fundamental role in maintaining habitat and landscape heterogeneity; however, these events can also have negative effects on some species. While we know that disturbances can reduce habitat quality for many species, leading to diminished populations and altered community structure, the effect of these events on individuals that continue to occupy affected areas remains unknown. We focused on understanding the impact of flood-mediated reduction of habitat quality on Swainson's Warblers (Limnothlypis swainsonii). In 2008, a catastrophic flood event occurred on the Mississippi River and its tributaries, severely affecting one of two locations where we had studied territorial males since 2004. To determine the impact of flooding on this species, we evaluated how body condition and apparent survival of males differed between locations and in pre-flood (2004)(2005)(2006)(2007) and post-flood (2008)(2009)(2010) periods. Body condition did not differ between locations after the flood, suggesting that flooding did not cause food limitation for this obligate ground forager. Apparent survival in the post-flood period was lower at both locations and led to near population extirpation at the heavily flood-impacted site. Overall, this study demonstrates the vulnerability of species to extreme hydrological events, an increasing threat due to climate change. Future research should focus on identifying species that are vulnerable to these events and determining appropriate conservation strategies. Conservation for the Swainson's Warbler should focus on identifying and conserving the highest elevation, least flood prone areas within bottomland hardwood forests and managing those areas for thick understory vegetation

    Comparing the effect of CTG+STan with CTG alone on emergency Cesarean section rate : STan Australian Randomized controlled Trial (START)

    Get PDF
    The authors would like to thank the women and their babies for participating. We would like to thank all the staff at the WCH, in particular Priya Umampathysivam, Denise Cheetham and Cecilia Heitmann for their assistance in recruitment of participants for START. We would also like to thank the members of the DSMC, Diogo Ayres-de-Campos, Scott Morris and Katherine Lee, for their oversight of START and the Clinical Information Service (CIS) team at the WCH for the comparative hospital dataPeer reviewedPublisher PD

    Temperature Dependence of Exciton Diffusion in Conjugated Polymers

    Get PDF
    The temperature dependence of the exciton dynamics in a conjugated polymer is studied using time-resolved spectroscopy. Photoluminescence decays were measured in heterostructured samples containing a sharp polymer-fullerene interface, which acts as an exciton quenching wall. Using a 1D diffusion model, the exciton diffusion length and diffusion coefficient were extracted in the temperature range of 4-293 K. The exciton dynamics reveal two temperature regimes: in the range of 4-150 K, the exciton diffusion length (coefficient) of ~3 nm (~1.5 × 10-4 cm2/s) is nearly temperature independent. Increasing the temperature up to 293 K leads to a gradual growth up to 4.5 nm (~3.2 × 10-4 cm2/s). This demonstrates that exciton diffusion in conjugated polymers is governed by two processes: an initial downhill migration toward lower energy states in the inhomogenously broadened density of states, followed by temperature activated hopping. The latter process is switched off below 150 K.

    Simulating the atmospheric response to the 11-year solar cycle forcing with the UM-UKCA model: the role of detection method and natural variability

    Get PDF
    The 11-year solar cycle forcing is recognised as an important atmospheric forcing; however, there remain uncertainties in characterising the effects of solar variability on the atmosphere from observations and models. Here we present the first detailed assessment of the atmospheric response to the 11-year solar cycle in the UM-UKCA (Unified Model coupled to the United Kingdom Chemistry and Aerosol model) chemistry–climate model (CCM) using a three-member ensemble over the recent past (1966–2010). Comparison of the model simulations is made with satellite observations and reanalysis datasets. The UM-UKCA model produces a statistically significant response to the 11-year solar cycle in stratospheric temperatures, ozone and zonal winds. However, there are also differences in magnitude, spatial structure and timing of the signals compared to observational and reanalysis estimates. This could be due to deficiencies in the model performance, and so we include a critical discussion of the model limitations, and/or uncertainties in the current observational estimates of the solar cycle signals. Importantly, in contrast to many previous studies of the solar cycle impacts, we pay particular attention to the role of the chosen analysis method in UM-UKCA by comparing the model composite and a multiple linear regression (MLR) results. We show that the stratospheric solar responses diagnosed using both techniques largely agree with each other within the associated uncertainties; however, the results show that apparently different signals can be identified by the methods in the troposphere and in the tropical lower stratosphere. Lastly, we examine how internal atmospheric variability affects the detection of the 11-year solar responses in the model by comparing the results diagnosed from the three individual ensemble members (as opposed to those diagnosed from the full ensemble). We show overall agreement between the responses diagnosed for the ensemble members in the tropical and mid-latitude mid-stratosphere to lower mesosphere but larger apparent differences at Northern Hemisphere (NH) high latitudes during the dynamically active season. Our UM-UKCA results suggest the need for long data sets for confident detection of solar cycle impacts in the atmosphere, as well as for more research on possible interdependence of the solar cycle forcing with other atmospheric forcings and processes (e.g. Quasi-Biennial Oscillation, QBO; El Niño–Southern Oscillation, ENSO)

    The theory of pulsar winds and nebulae

    Full text link
    We review current theoretical ideas on pulsar winds and their surrounding nebulae. Relativistic MHD models of the wind of the aligned rotator, and of the striped wind, together with models of magnetic dissipation are discussed. It is shown that the observational signature of this dissipation is likely to be point-like, rather than extended, and that pulsed emission may be produced. The possible pulse shapes and polarisation properties are described. Particle acceleration at the termination shock of the wind is discussed, and it is argued that two distinct mechanisms must be operating, with the first-order Fermi mechanism producing the high-energy electrons (above 1 TeV) and either magnetic annihilation or resonant absorption of ion cyclotron waves responsible for the 100 MeV to 1 TeV electrons. Finally, MHD models of the morphology of the nebula are discussed and compared with observation.Comment: 33 pages, to appear in Springer Lecture Notes on "Neutron stars and pulsars, 40 years after the discovery", ed W.Becke
    • 

    corecore