58 research outputs found

    MicroPET imaging of 5-HT1A receptors in rat brain: a test-retest [18F]MPPF study

    Get PDF
    Purpose: Earlier studies have shown that positron emission tomography (PET) imaging with the radioligand [18F]MPPF allows for measuring the binding potential of serotonin 5-hydroxytryptamine1A (5-HT1A) receptors in different regions of animal and human brain, including that of 5-HT1A autoreceptors in the raphe nuclei. In the present study, we sought to determine if such data could be obtained in rat, with a microPET (R4, Concorde Microsystems). Methods: Scans from isoflurane-anaesthetised rats (n = 18, including six test-retest) were co-registered with magnetic resonance imaging data, and binding potential, blood to plasma ratio and radiotracer efflux were estimated according to a simplified reference tissue model. Results: Values of binding potential for hippocampus (1.2), entorhinal cortex (1.1), septum (1.1), medial prefrontal cortex (1.0), amygdala (0.8), raphe nuclei (0.6), paraventricular hypothalamic nucleus (0.5) and raphe obscurus (0.5) were comparable to those previously measured with PET in cats, non-human primates or humans. Test-retest variability was in the order of 10% in the larger brain regions (hippocampus, medial prefrontal and entorhinal cortex) and less than 20% in small nuclei such as the septum and the paraventricular hypothalamic, basolateral amygdaloid and raphe nuclei. Conclusions: MicroPET brain imaging of 5-HT1A receptors with [18F]MPPF thus represents a promising avenue for investigating 5-HT1A receptor function in ra

    MicroPET imaging of 5-HT1A receptors in rat brain: a test-retest [F-18]MPPF study

    Get PDF
    Purpose Earlier studies have shown that positron emission tomography (PET) imaging with the radioligand [F-18] MPPF allows for measuring the binding potential of serotonin 5-hydroxytryptamine(1A) (5-HT1A) receptors in different regions of animal and human brain, including that of 5-HT1A autoreceptors in the raphe nuclei. In the present study, we sought to determine if such data could be obtained in rat, with a microPET (R4, Concorde Microsystems)

    Statin therapy inhibits remyelination in the central nervous system

    Get PDF
    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood-brain barrier-permeable statin in multiple sclerosis clinical trials, has been shown to impact the in vitro processes that have been implicated in remyelination. Animals were fed a cuprizone-supplemented diet for 6 weeks to induce localized demyelination in the corpus callosum; subsequent return to normal diet for 3 weeks stimulated remyelination. Simvastatin was injected intraperitoneally during the period of coincident demyelination and OPC maturation (weeks 4 to 6), throughout the entire period of OPC responses (weeks 4 to 9), or during the remyelination-only phase (weeks 7 to 9). Simvastatin treatment (weeks 4 to 6) caused a decrease in myelin load and both Olig2(strong) and Nkx2.2(strong) OPC numbers. Simvastatin treatment (weeks 4 to 9 and 7 to 9) caused a decrease in myelin load, which was correlated with a reduction in Nkx2.2(strong) OPCs and an increase in Olig2(strong) cells, suggesting that OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes

    Automatic quantitation of multiple sclerosis lesions on MR images

    No full text
    A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate flow images which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials

    FDG-PET imaging for the evaluation of antiglioma agents in a rat model

    No full text
    The increasing development of novel anticancer agents demands parallel advances in the methods used to rapidly assess their therapeutic efficacy (TE) in the preclinical phase. We evaluated the ability of small-animal PET, using the 18F-fluorodeoxy-D-glucose (FDG) radiotracer, to predict the TE of a number of anticancer agents in the rat C6 glioma model following 3 days of treatment. Semi-quantitative measurements of changes in FDG uptake during the course of treatment (standardized uptake value response [SUVr]) were found to be significantly lower in tumors treated with the hypoxia-inducible factor-1α inhibitor YC-1 (15 mg/kg) than in tumors in the control group. No significant SUVr change was observed following a similar 3-day regimen with the proapoptotic agent NS1619 (20 μg/kg), the combination of YC-1 and NS1619, or the alkylating agent temozolomide (7.5 mg/kg). Quantitative immunohistochemical studies demonstrated significantly lower levels of glucose transporter-1 (GLUT-1) expression in the YC-1 – treated tumors, thereby correlating with the low SUVr observed in this group. The ability of SUVr to predict gold-standard outcomes of TE was further validated as YC-1 – treated tumors had decreased volumes compared to control tumors. As such, we successfully demonstrated the ability of FDG-PET to rapidly determine the TE of novel agents for the treatment of glioma in the preclinical phase of evaluation
    • …
    corecore