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Abstract
Purpose Earlier studies have shown that positron emission
tomography (PET) imaging with the radioligand [18F]MPPF
allows for measuring the binding potential of serotonin 5-
hydroxytryptamine1A (5-HT1A) receptors in different regions
of animal and human brain, including that of 5-HT1A

autoreceptors in the raphe nuclei. In the present study, we
sought to determine if such data could be obtained in rat,
with a microPET (R4, Concorde Microsystems).
Methods Scans from isoflurane-anaesthetised rats (n=18,
including six test–retest) were co-registered with magnetic
resonance imaging data, and binding potential, blood to
plasma ratio and radiotracer efflux were estimated accord-
ing to a simplified reference tissue model.

Results Values of binding potential for hippocampus (1.2),
entorhinal cortex (1.1), septum (1.1), medial prefrontal
cortex (1.0), amygdala (0.8), raphe nuclei (0.6), para-
ventricular hypothalamic nucleus (0.5) and raphe obscurus
(0.5) were comparable to those previously measured with
PET in cats, non-human primates or humans. Test–retest
variability was in the order of 10% in the larger brain
regions (hippocampus, medial prefrontal and entorhinal
cortex) and less than 20% in small nuclei such as the
septum and the paraventricular hypothalamic, basolateral
amygdaloid and raphe nuclei.
Conclusions MicroPET brain imaging of 5-HT1A receptors
with [18F]MPPF thus represents a promising avenue for
investigating 5-HT1A receptor function in rat.
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Introduction

The brain serotonin [5-hydroxytryptamine (5-HT)] system
regulates a variety of functions and behaviours (reviewed in
[1, 2]) via a neuronal network pervading most regions of the
neuraxis [3–8] and operating through at least 14 5-HT
receptor subtypes [9]. Particular attention has been paid to
the characterisation of the structural, pharmacological and
functional properties of the serotonin1A receptors (5-HT1AR;
e.g. [10]) owing to their implication in different neurological
and psychiatric diseases [11] and their established role in the
action of antidepressants/anxiolytics, such as the selective
serotonin reuptake inhibitors (reviewed in [12]). 5-HT1AR act
as autoreceptors on the soma and dendrites of 5-HT
neurons themselves, in the raphe dorsalis nucleus (RN),
for example, and as somatodendritic (so-called post-
synaptic) heteroreceptors in territories of 5-HT projection,
such as hippocampus and cerebral cortex. Because 5-HT!A

autoreceptors negatively control the firing and release of
5-HT neurons (reviewed in [13]), their desensitisation,
together with increased sensitivity and signalling of 5-
HT1A heteroreceptors [14–18], is generally viewed as
accounting for the increases in 5-HT neurotransmission
underlying the efficacy of antidepressant treatments.

Several ligands have been developed to image 5-HT1AR in
vivo with positron emission tomography (PET), among
which the selective 5-HT1A receptor antagonist, 4-2′-
(methoxyphenyl)-1-[2″-(N-2″-pyridinyl)-p-fluorobenzamido]
ethyl-piperazine (MPPF), labelled with [18F]fluorine: [18F]
MPPF [19, 20]. Preliminary radiopharmacological experi-
ments have indicated that the regional distribution of [18F]
MPPF in rat brain matches the density of 5-HT1AR binding
sites [21, 22]. [18F]MPPF has been successfully used for PET
studies in cat, monkey and human brain (reviewed in [23]).

An initial microPET study with [18F]MPPF has already
shown high binding of this radioligand in the hippocampus
of anaesthetised rat [21]. [18F]MPPF microPET imaging is
of particular interest in this species, in view of the detailed
knowledge of its 5-HT system and the increasing use of
rodent models for investigating a variety of pathological
conditions and their treatment, including mood disorders.
Moreover, combined immuno-electron microscopic studies
of 5-HT1AR and β-microprobe measurement of the in vivo
binding of [18F]MPPF in rat have shown that after acute
treatment with the prototypical SSRI, fluoxetine (Prozac),
selective decreases in [18F]MPPF binding are associated
with 5-HT1A autoreceptor internalisation in the dorsal raphe
nucleus [24, 25]. Moreover, under similar conditions,
decreases in binding potential (BP) have been measured

with PET in the dorsal raphe nucleus of cat and human [26,
27]. From a brain imaging perspective, PET scanners
designed to image small animals offer the advantage of
having better spatial resolution (<1.85 mm) than full-size
PET scanners (4 mm) but lower sensitivity. In this
context, it was deemed useful to assess the applicability
of the [18F]MPPF microPET strategy for quantifying 5-
HT1AR binding in the brain of living rats and its reliability
over time, notably in an anatomical region as small as the
DRN.

Materials and methods

Animals

All procedures involving animals and their care were
conducted in strict accordance with the Guidelines for Care
of Laboratory Animals of the French Ministère de l’Agricul-
ture et de la Forêt (87–848) and the European Economic
Community (86–60, EEC) and the Guide to the Care and Use
of Experimental Animals (Ed2) of the Canadian Council on
Animal Care. The magnetic resonance imaging (MRI)
protocol was approved by the Ethics Committee of the Centre
Léon Bérard (Lyon, France) and the microPET imaging
protocol by the McGill University Animal Care Committee
(Montreal, QC, Canada).

MRI data were obtained from a single adult male, Sprague–
Dawley rat (Élevage Dépré, Saint Doulchard, France) weigh-
ing 250 g. The microPET experiments were carried out in 13
adult male, Sprague–Dawley rats (Charles River, St-Constant,
QC, Canada) weighing 250±25 g. These rats were housed
individually at a constant temperature (20–22°C) and under a
12-h light/dark cycle, with free access to food and water.

Magnetic resonance imaging

The MRI study was carried out on a 7-T Bruker BioSpin
system (Bruker Biospin, Ettlingen, Germany) using a
surface coil of 23 mm in diameter. After anaesthesia by
inhalation of isoflurane (5% for 2 min followed by 2%) in
air (2 L/min), the rat was placed in a heated mat-cushioned
body holder (37°C), with its head immobilised by a hard
palate piece. The MRI acquisition (BIO 7T, Bruker BioSpin
MRI GmbH, resolution) consisted of a 3D anatomical scan
of 38-min duration. A 22.5×20×22.5-mm field of view
(FOV) was used to obtain a 256×128 matrix divided in 45
slices, with a resolution of 88×156×500 μm.

MicroPET scans

[18F]MPPF was obtained by nucleophilic fluoration of a
nitro precursor as previously described in detail [20]. The
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radiochemical yield was in the order of 20–25% at the end
of synthesis, with a specific activity of 37–111 GBq/μmol.

MicroPET imaging of [18F]MPPF was performed with a
MicroPET R4 (Siemens Preclinical Solutions, Knoxville,
TN, USA) scanner, which has a volumetric resolution better
than 15.6 μl within 20 mm of the centre of the FOV [28].
The spatial resolution of this scanner at the centre of the
FOV is 1.85 mm full-width at half-maximum (FWHM) in
the axial direction and 1.66 mm FWHM in the transaxial
and tangential directions.

After isoflurane anaesthesia as above, the rat was
placed in the body holder with its head affixed to the
incisor bar. The laser guidance system at the front of the
gantry was used to centre the brain in the FOV. A 10-min
transmission scan was acquired using a rotating 57Co point
source, followed by a bolus injection of 7.4–11.1 MBq of
[18F]MPPF in the tail vein. Radioactivity was then mea-
sured in 27 sequential time frames of increasing duration
(8×30, 6×60, 5×120 and 8×300 s) for a total duration of
60 min.

Sinograms were normalised, corrected for randoms,
scatter, attenuation, dead time and radio element decay
and finally reconstructed with a filtered backprojection
(Hanning filter of cut-off 0.5 cycles/pixels). This
allowed the dynamic study of 18 volumes, each with a
128×128 matrix divided in 63 slices and 0.6 mm3 in
voxel size.

Analysis of microPET data

Dynamic PET volumes from 0 to 60 min were integrated
and manually co-registered with MRI data (Register-
1.3.6 and Minc-2.0.9, MNI-BIC Software, Montreal,
Canada) using a rigid body transformation with 6
degrees of freedom. The obtained transformation matrix
was then applied to the dynamic PET volumes. A 20-
mm3 ellipse was drawn in the centre of the caudal area of
cerebellum on the co-registered MRI (Display-1.3, MNI-
BIC Software).

This allowed us to estimate the binding parameters of the
tracer according to the simplified reference tissue model
(SRTM), as previously applied to [11C]WAY100635 [29]
and to [18F]MPPF in humans [30, 31] and very recently to
[18F]MPPF in rats [32]. The SRTM is based on the analytic
solution of the compartment model for estimating three
parameters without the use of an arterial sampling input
function. In this model, BP is the ratio of available receptor
density to receptor affinity, with BP � B'max=K'd (B'max

being the apparent Bmax and K'd the apparent dissociation
constant), k2 is the tracer’s efflux between the vascular
system and R1 is the ratio of plasma to brain transport
constant in the volume of interest (VOI) and reference
region (K1=K'1). The cerebellum was used as the region of

reference since it contains very few 5-HT1AR in adult rat
[33, 34].

Parametric images of BP, k2 and R1 were calculated from
individual voxel time–activity curves using Receptor
Parametric Mapping software [35]. BP volumes were
automatically co-registered using PET-to-PET cross-corre-
lation with 7 degrees of freedom (mni_autoreg-0.99.3,
MNI-BIC Software). The same transformation matrices
were applied to parametric images of k2 and R1. All 18 PET
volumes of BP were averaged into a single volume, which
was then fused with the MRI to draw the regions containing
BP and regrouped into anatomical VOIs (Display-1.3,
MNI-BIC Software). The Paxinos and Watson’s stereotaxic
atlas of the rat brain [36] was used as an anatomical
reference to identify eight regions on this MRI and draw the
corresponding VOIs for medial prefrontal cortex (27 mm3),
septum (8 mm3), hippocampus (100 mm3), raphe nuclei
(3 mm3), entorhinal cortex (15 mm3), amygdala (7 mm3),
paraventricular hypothalamic nucleus (4 mm3) and raphe
obscurus (2 mm3). Regional radioactivity concentration
(kilobecquerel per cubic centimetre) was also measured in
the dynamic PET volumes for each VOI and plotted versus
time.

Test–retest variability (Eq. 1), intraclass correlation
coefficient (Eq. 2) and the coefficient of variation (Eq. 3)
were computed with the following equations:

Test� retest variability TRVð Þ

¼ 100 � scan1�scan2j j
scan1�scan2ð Þ=2

ð1Þ

Intraclass correlation coefficient ICCð Þ

¼ MSBS�MSWS

MSBSþ n�1ð ÞMSWS
ð2Þ

Coefficient of variation CVð Þ ¼ 100 � s
m

ð3Þ

MSBS and MSWS are the mean sum of squares between and
within subjects, respectively; n is the number of within-
subject measurements, μ is the mean value and σ is the
standard deviation. ICC represents the ratio of between-
subject variance to total variance and is the appropriate
metric for assessing within-subject reliability. Therefore, ICC
values will be particularly high when within-subject (i.e.
within-subject between-session) variance is low and be-
tween-subject variance is high. CV is a measure of dispersion
and often referred to as the relative standard deviation.
Regional BP values were checked for normality using
d’Agostino and Pearson’s omnibus normality test and then
compared by one-way ANOVA with Bonferroni’s post test.
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Student’s two-tailed paired t test was also used to assess
regional differences in BP between test and retest scans
(GraphPad Prism version 5, GraphPad Software, San Diego,
CA, USA).

Statistical parametric mapping (SPM) analysis

Co-registered parametric images of BP were smoothed with
a 1-mm Gaussian blur, and a voxelwise paired t test was
performed in SPM5 (Wellcome Trust Centre for Neuro-
imaging at UCL, UK) to examine differences between test
and retest scans (voxel size 0.1×0.2×0.5 mm; 1,474,560
voxels; height threshold T=7.17, p<0.001 uncorrected;
extent threshold k=10 voxels, p=0.031).

Pretreatment with 5-HT1A receptor agonist

A single rat was injected with a saline solution containing
the 5-HT1A agonist 8-OH-DPAT (5 mg/kg, i.p.; Sigma-
Aldrich, Oakville, Ontario, Canada) 60 min before under-
going a [18F]MPPF microPET scan.

Results

As previously observed in PET studies in cat [26, 37] and
human (reviewed in [23]), the regional radioactivity time
curves after i.v. injection in the rat indicated an initial surge
of [18F]MPPF throughout brain, followed within minutes
by a relatively rapid washout over the next hour, but at
varying rates according to the region examined (Fig. 1). At
all time points, the highest radioactivity was that measured
in the hippocampus, followed by septum, medial prefrontal
cortex and raphe nuclei. The radioactivity in cerebellum
dropped sharply in the first 5 min after the bolus injection
of [18F]MPPF and remained low at all time points thereafter
(Fig. 1).

Receptor parametric mapping revealed the presence of
specific 5-HT1A BP in the medial prefrontal cortex, septum,
amygdala, hippocampus, entorhinal cortex, raphe nuclei,
paraventricular hypothalamic nucleus and raphe obscurus
(Figs. 2 and 3). The co-registration of BP and MRI images
confirmed the raphe nuclei as the origin of [18F]MPPF
binding in mesencephalon, which was clearly discernible
and easily delineated from its immediate surround in the
coronal (Fig. 2) as well as sagittal and horizontal planes
(Fig. 3).

As measured with the SRTM (Table 1), the highest BP
value was that in hippocampus (1.10±0.20), followed by
entorhinal (1.09±0.28), septum (1.08±0.19), medial pre-
frontal cortex (1.00±0.16), amygdala (0.84±0.11), DRN
(0.58±0.11), paraventricular hypothalamic nucleus (0.53±

0.14) and raphe obscurus (0.52±0.16). The comparison of
regional BP values indicated that most of the regions
examined were significantly different from one another as
shown in Fig. 4.

The estimated regional values of k2 ranged from 0.010±
0.005 in the raphe obscurus to 0.015±0.002 in the medial
prefrontal cortex (Table 1). Regional differences in k2 were
only found in the medial prefrontal cortex, which differed
significantly from the entorhinal cortex (p<0.05) and raphe
obscurus (p<0.01; Fig. 4).

Regional R1 values ranged from 0.70±0.13 in the
amygdala to 0.96±0.22 in the DRN (Table 1). They
differed significantly in DRN not only from those measured
in the septum (p<0.05) and amygdala (p<0.001) but also
between the latter region and raphe obscurus (p<0.01;
Fig. 2).

As shown in Table 2, the average percent changes
between test and retest BP values ranged from 0.3% in
the basolateral amygdaloid nucleus to 10.2% in the DRN,
while BP test–retest variability ranged from 7% in
hippocampus to 34% in the raphe obscurus. ICC values
ranged from to −0.06 in the amygdala to 0.92 in the
entorhinal cortex. The test–retest variability in DRN
(18%) was comparable to that in the paraventricular
hypothalamic nucleus (17%). There were no statistically
significant differences between test and retest BP values
when compared by Student’s paired t test in the VOIs

Fig. 1 Regional radioactivity in the hippocampus, septum, medial
prefrontal cortex, raphe nuclei and cerebellum after the bolus injection
of [18F]MPPF. Mean from 18 scans in 12 rats, including the test–retest
in six of these rats
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(Table 2) or by voxelwise analysis with SPM (data not
shown).

Pretreatment with the 5-HT1A agonist 8-OH-DPAT
completely blocked the binding of [18F]MPPF in all
cerebral regions (data not shown).

Discussion

The radioactivity curves here obtained from five regions of
rat brain, in the hour following the bolus injection of [18F]
MPPF, were comparable to those previously measured with

Fig. 2 Pseudo-colour visualisation of [18F]MPPF BP (a, d, g, j, m),
MRI views (b, e, h, k, n) and fusion of both type of images (c, f, i, l,
o) at different coronal levels across rat brain. Data from 18 microPET
scans in 12 rats and one MRI, as described in the “Materials and
methods”. In b, e, h and n, diagrams from Paxinos and Watson’s atlas

of the rat brain [36] are superposed on the MRI images to identify
regions of interest. MPFC Medial prefrontal cortex, Spt septum, PVN
paraventricular hypothalamic nucleus, Am amygdala, Hip hippocam-
pus, RN raphe nuclei, Ent entorhinal cortex, Ce cerebellum, ROb,
raphe obscurus. Pseudo-colour scale: BP 0.3–2
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PET in rats [21], cats [20, 26, 37, 38], non-human primates
[21, 39] and humans [30, 40–42]. The hippocampus
displayed the highest radioactivity, followed by septum,
medial prefrontal cortex and raphe nuclei. A similar
distribution pattern has also been reported using in vitro
[19, 33, 43, 44] or ex vivo [45, 46] autoradiography to
measure the density of radioligand binding to 5-HT1AR in
rat brain. Furthermore, the specificity of [18F]MPPF
binding was confirmed by the pretreatment with 8-OH-
DPAT, which completely blocked [18F]MPPF binding in
every brain region containing 5-HT1A receptors.

The present report provides regional estimates of [18F]
MPPF BP, k2 and R1 values for rat brain. As shown in
Table 3, the BP values were in the same range as those
previously reported in various species using PET. Very
recently, Millet et al. [32] have reported strikingly similar
[18F]MPPF BP values in the hippocampus and raphe nuclei
of rats using the YAP-(S)PET scanner, even though their
data were not corrected for attenuation or scatter.

The realignment procedure used in the determination of
PET volumes, as described in the “Materials and methods”,
was crucial in obtaining reliable measurements from the
various regions examined (see [47]). In this way, a single
template could be used to extract BP, k2 and R1 values from
each volume, thus reducing the risk of a sampling bias
associated with the drawing of ROIs. This method allowed us
to estimate BP in regions that are not commonly sampled in
microPET studies, such as the septum, PVN, amygdala, DRN
and even smaller regions such as the raphe obscurus (Robs).

Despite our best efforts, however, a number of
methodological constraints could not be avoided. Fore-
most, in view of the limited resolution of the microPET
camera and the size of the smaller regions examined
(raphe nuclei, PVN, RObs), it was likely that the BP
values in these regions were underestimated due to
partial volume effects, as previously noted with [11C]
WAY-100635 in human NRD [29, 48]. This underestima-
tion might have been less with [18F]MPPF than [11C]
WAY-100635 because of the lower energy of the 18F
radionuclide, yet significant. On the other hand, a potential
source of overestimation was the accumulation of radio-
activity in the Harderian glands, located behind the eyes
(visible in Figs. 2 and 3), which could have increased
readings from adjacent regions such as the medial
prefrontal cortex. It should also be noted that anaesthetics
may affect the binding of radioligands to 5-HT1AR by
modulating the affinity state of G-protein-coupled recep-
tors [49], as convincingly shown to be the case for
dopamine receptors [50, 51].

Nevertheless, the reproducibility and reliability of our
sampling method was evidenced by a relatively low
variability in repeated measurements of BP and high
ICC, at least in the larger brain regions examined (see
Table 2). The regional values of test–retest variability
were generally lower than those reported with [11C]WAY-
100635 in humans (e.g. hippocampus 26±21%, [48]), but
on par with those found with [18F]MPPF in cats (e.g.
hippocampus 7±6%, [26]) and humans (e.g. hippocampus

Fig. 3 Pseudo-colour visualisation of [18F]MPPF BP (a, d), MRI
views (b, e) and fusion of both types of images (c, f) as in Fig. 2, but
in the sagittal (a, b, c) and the horizontal (d, e, f) planes. MPFC

Medial prefrontal cortex, Spt, septum, PVN paraventricular hypotha-
lamic nucleus, Hip hippocampus, RN raphe nuclei, Ce cerebellum,
ROb raphe obscurus. Pseudo-colour scale: BP 0.3–2
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7±3%, [31]; e.g. hippocampus 11±11%, [27]). In the
hippocampus, [18F]MPPF BP test–retest variability was in
the same range as those reported with [11C]raclopride
(14.0%) and [18F]FECT (7.7%) in rat striatum [47]. These
values were also comparable to the test–retest variability
of DVR measured with [11C]raclopride (8.3%) in rat
striatum [52]. Test–retest variability was typically higher
(and ICC lower) in smaller brain regions. This was
particularly noticeable in the RObs. In fact, it was not
expected to even be able to identify such a small
anatomical region as a site of [18F]MPPF binding, in view
of the resolution and sensitivity of the microPET scanner.
The low ICC values found in certain regions could also
reflect the fact that intersubject variability is relatively low
in rats as opposed to human subjects [53]. This could
imply that, in [18F]MPPF microPET studies involving

repeated scans, it might not be indispensable to use the
same animal as its own control.

MicroPET imaging of 5-HT1A receptors with [18F]
MPPF represents a valuable asset to study the activation of
5-HT1A brain receptors in vivo. Pharmacological com-
pounds, which bind to 5-HT1A with high affinity, occupy
5-HT1A receptor binding sites and/or displace [18F]MPPF
binding, as we have observed with WAY-100635 in cats
(unpublished data) and 8-OH-DPAT in rats. The use of this
technique might help to determine whether atypical
antipsychotics with low affinity for 5-HT1A receptors in
vitro actually interact with 5-HT1A heteroreceptors in vivo
[54, 55] and also to better characterise the activation and
internalisation of 5-HT1A autoreceptors by agonists [25,
56], SSRIs [24, 26, 27, 57] and atypical antipsychotics
[58].

Fig. 4 Regional values of BP,
R1 and k2. Data from 18 micro-
PET scans, as described in the
“Materials and methods”.
Regions showing statistically
significant differences are linked
by hooks with asterisks in front
of the differing region(s). *p<
0.05, **p<0.01 and ***p<
0.001 by one-way ANOVA with
Bonferroni’s post test. MPFC
Medial prefrontal cortex, Spt
septum, Hip hippocampus, RN
raphe nuclei, Ent entorhinal
cortex, Am amygdala, PVN par-
aventricular hypothalamic nu-
cleus, ROb raphe obscurus
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Table 3 5-HT1A BP values in selected PET studies

Study Present [32] [59] [26] [60] [31] [27]
Radioligand [18F]MPPF [18F]MPPF [11C]RWAY [18F]MPPF [18F]PWAY [18F]MPPF [18F]MPPF
Species Rat Rat Rat Cat Monkey Human Human

Region
Prefrontal cortex 1±0.2 – 1.2±0.1 1.1±0.1 1.9±0.1 0.8±0.1 0.7±0.2
Septum 1.1±0.2 – – 1.4±0.1 – – –
Hippocampus 1.2±0.2 0.9±0.5 1.5±0.2 1.5±0.2 – 1.4±0.2 1.7±0.5
Entorhinal cortex 1.1±0.2 – – – – 1.3±0.2 –
Raphe nuclei 0.5±0.1 0.5±0.4 – 0.6±0.1 0.5±0.1 0.3±0.1 0.6±0.2

Table 2 Coefficient of variation (CV), test–retest variability (TRV) and intraclass correlation coefficient (ICC) were computed, as described in the
“Materials and methods”

Region BP test
(mean±SD)

CV (%) BP retest
(mean±SD)

CV (%) Mean change (|%|) TRV (%±SD) t test (p) ICC

Medial prefrontal cortex 0.95±0.14 14.6 1.03±0.06 6.2 8.5 9.7±10.3 0.16 0.54
Septum 1.11±0.11 10.2 1.05±0.16 15.5 5.5 13.3±9.9 0.51 0.29
Paraventricular hypothalamic
nucleus

0.50±0.09 17.8 0.51±0.03 6.0 1.7 17.3±7.8 0.86 0.07

Amygdala 0.81±0.10 13.0 0.81±0.08 9.5 0.3 15.0±8.9 0.97 −0.06
Hippocampus 1.10±0.17 15.6 1.08±0.13 11.9 2.4 11.7±6.0 0.71 0.67
Entorhinal cortex 1.08±0.17 16.1 1.10±0.17 15.4 2.6 6.9±4.2 0.48 0.92
Raphe nuclei 0.52±0.08 14.6 0.57±0.09 15.3 10.2 18.4±5.5 0.29 0.41
Nucleus raphe obscurus 0.48±0.12 24.7 0.46±0.14 30.6 2.6 34.5±23.7 0.89 0.22

Means±SD from six rats (two scans per rat)

Table 1 [18F]MPPF BP (bind-
ing potential), k2 (tracer’s efflux
in the vascular system) and R1
(ratio of plasma to brain transport
constant) were measured with the
simplified reference tissue model
(SRTM), as described in the
“Materials and methods”

Mean±SD from 18 scans in 12
rats, including the test–retest in
six of these rats

Region BP (mean±SD) k2 (mean±SD) R1 (mean±SD)

Medial prefrontal cortex 1.00±0.16 0.015±0.002 0.82±0.16
Septum 1.08±0.20 0.013±0.003 0.75±0.15
Paraventricular hypothalamic nucleus 0.53±0.14 0.012±0.003 0.85±0.16
Amygdala 0.84±0.11 0.011±0.003 0.70±0.13
Hippocampus 1.20±0.19 0.012±0.002 0.77±0.12
Entorhinal cortex 1.09±0.28 0.011±0.003 0.81±0.12
Raphe nuclei 0.58±0.11 0.012±0.003 0.96±0.22
Nucleus raphe obscurus 0.52±0.16 0.010±0.005 0.92±0.19
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