186 research outputs found

    Are We Engaged? A College-level Inventory of Community Engagement

    Get PDF
    In this study, a team of six faculty members from Weber State University’s Telitha E. Lindquist College of Arts & Humanities tested and applied the Engaged College Rubric as part of a pilot program. Based on this application of the rubric, the committee found that the college tended toward the “Emerging” (i.e., first stage) classification for most items, thus indicating a need to continue developing programs and practices that center on community engagement (CE) within the college. The primary finding from this activity was that fragmentation exists surrounding CE in the college, within its constituent departments, and at the university level. This fragmentation limits the effectiveness of community-engaged learning, teaching, and scholarship. The committee’s findings, and interpretations of the rubric elements, are discussed, as are recommendations for future use of the Engaged College Rubric

    Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and O3 in the Arctic

    Get PDF
    We use the GEOS-Chem chemical transport model to examine the influence of bromine release from blowingsnow sea salt aerosol (SSA) on springtime bromine activation and O3 depletion events (ODEs) in the Arctic lower troposphere. We evaluate our simulation against observations of tropospheric BrO vertical column densities (VCDtropo) from the GOME-2 (second Global Ozone Monitoring Experiment) and Ozone Monitoring Instrument (OMI) spaceborne instruments for 3 years (2007-2009), as well as against surface observations of O3. We conduct a simulation with blowingsnow SSA emissions from first-year sea ice (FYI; with a surface snow salinity of 0.1 psu) and multi-year sea ice (MYI; with a surface snow salinity of 0.05 psu), assuming a factor of 5 bromide enrichment of surface snow relative to seawater. This simulation captures the magnitude of observed March-April GOME-2 and OMI VCDtropo to within 17 %, as well as their spatiotemporal variability (r D 0:76-0.85). Many of the large-scale bromine explosions are successfully reproduced, with the exception of events in May, which are absent or systematically underpredicted in the model. If we assume a lower salinity on MYI (0.01 psu), some of the bromine explosions events observed over MYI are not captured, suggesting that blowing snow over MYI is an important source of bromine activation. We find that the modeled atmospheric deposition onto snow-covered sea ice becomes highly enriched in bromide, increasing from enrichment factors of ~ 5 in September-February to 10-60 in May, consistent with composition observations of freshly fallen snow. We propose that this progressive enrichment in deposition could enable blowing-snow-induced halogen activation to propagate into May and might explain our late-spring underestimate in VCDtropo. We estimate that the atmospheric deposition of SSA could increase snow salinity by up to 0.04 psu between February and April, which could be an important source of salinity for surface snow on MYI as well as FYI covered by deep snowpack. Inclusion of halogen release from blowing-snow SSA in our simulations decreases monthly mean Arctic surface O3 by 4-8 ppbv (15 %-30 %) in March and 8-14 ppbv (30 %-40 %) in April. We reproduce a transport event of depleted O3 Arctic air down to 40 N observed at many sub-Arctic surface sites in early April 2007. While our simulation captures 25 %-40 % of the ODEs observed at coastal Arctic surface sites, it underestimates the magnitude of many of these events and entirely misses 60 %-75 % of ODEs. This difficulty in reproducing observed surface ODEs could be related to the coarse horizontal resolution of the model, the known biases in simulating Arctic boundary layer exchange processes, the lack of detailed chlorine chemistry, and/or the fact that we did not include direct halogen activation by snowpack chemistry

    A Phase I Trial of Aminolevulinic Acid-Photodynamic Therapy for Treatment of Oral Leukoplakia

    Get PDF
    Background Photodynamic therapy with aminolevulinic acid (ALA PDT) for oral leukoplakia has shown promising effects in regression of oral leukoplakia. Although ALA has been extensively studied and is an ideal photosensitizer, the optimal light dose for treatment of oral leukoplakia has not been determined. We conducted a phase I study to determine MTD and DLT of PDT in patients treated with ALA for leukoplakia. Methods Patients with histologically confirmed oral leukoplakia received a single treatment of ALA PDT in cohorts with escalating doses of light (585 nm). Clinical, histologic, and biologic markers were assessed. Results Analysis of 11 participants is reported. No significant toxicity from ALA PDT was observed in patients who received ALA with a light dose of up to 4 J/cm2. One participant experienced transient grade 3 transaminase elevation due to ALA. One participant had a partial clinical response 3 months after treatment. Biologic mucosal risk markers showed no significant associations. Determination of MTD could not be accomplished within a feasible timeframe for completion of the study. Conclusions ALA PDT could be safely administered with a light dose up to 4 J/cm2 and demonstrated activity. Larger studies are needed to fully elucidate the MTD and efficacy of ALA-PDT

    Effects of postdepositional processing on nitrogen isotopes of nitrate in the Greenland Ice Sheet Project 2 ice core

    Get PDF
    Records of ice core nitrate and its isotopes hold the potential to assess past atmospheric conditions regarding NOx and oxidant levels. However, relating such records to past atmospheric conditions requires a site-specific understanding of the postdepositional processing of snow nitrate. We report δ15N(NO3−) records from the Greenland Ice Sheet Project 2 (GISP2) ice core over major climate transitions. Model calculations and comparison with records of parameters influencing UV-driven postdepositional processing of snow nitrate suggest that the observed variability in GISP2 δ15N(NO3−) over major climate transitions is primarily driven by changes in the degree of postdepositional loss of snow nitrate. Estimates of the fractional loss of snow nitrate is (16–23)% in the Holocene and (45–53)% in the glacial period, suggesting a (41 ± 32)% lower nitrate depositional flux to Greenland during the glacial period relative to the Holocene

    Derivation of genetic interaction networks from quantitative phenotype data

    Get PDF
    We have generalized the derivation of genetic-interaction networks from quantitative phenotype data. Familiar and unfamiliar modes of genetic interaction were identified and defined. A network was derived from agar-invasion phenotypes of mutant yeast. Mutations showed specific modes of genetic interaction with specific biological processes. Mutations formed cliques of significant mutual information in their large-scale patterns of genetic interaction. These local and global interaction patterns reflect the effects of gene perturbations on biological processes and pathways

    Effects of Sea Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric Chemistry : Implications for Radiative Forcing

    Get PDF
    Marine cloud brightening (MCB) is proposed to offset global warming by emitting sea salt aerosols to the tropical marine boundary layer, which increases aerosol and cloud albedo. Sea salt aerosol is the main source of tropospheric reactive chlorine (Cly) and bromine (Bry). The effects of additional sea salt on atmospheric chemistry have not been explored. We simulate sea salt aerosol injections for MCB under two scenarios (212–569 Tg/a) in the GEOS-Chem global chemical transport model, only considering their impacts as a halogen source. Globally, tropospheric Cly and Bry increase (20–40%), leading to decreased ozone (−3 to −6%). Consequently, OH decreases (−3 to −5%), which increases the methane lifetime (3–6%). Our results suggest that the chemistry of the additional sea salt leads to minor total radiative forcing compared to that of the sea salt aerosol itself (~2%) but may have potential implications for surface ozone pollution in tropical coastal regions

    Anthropogenic Influence on Tropospheric Reactive Bromine Since the Pre‐industrial: Implications for Arctic Ice‐Core Bromine Trends

    Get PDF
    Tropospheric reactive bromine (Bry) influences the oxidation capacity of the atmosphere by acting as a sink for ozone and nitrogen oxides. Aerosol acidity plays a crucial role in Bry abundances through acid-catalyzed debromination from sea-salt-aerosol, the largest global source. Bromine concentrations in a Russian Arctic ice-core, Akademii Nauk, show a 3.5-fold increase from pre-industrial (PI) to the 1970s (peak acidity, PA), and decreased by half to 1999 (present day, PD). Ice-core acidity mirrors this trend, showing robust correlation with bromine, especially after 1940 (r = 0.9). Model simulations considering anthropogenic emission changes alone show that atmospheric acidity is the main driver of Bry changes, consistent with the observed relationship between acidity and bromine. The influence of atmospheric acidity on Bry should be considered in interpretation of ice-core bromine trends

    The Strayed Reveller, No. 2

    Get PDF
    The second issue of The Strayed Reveller.https://scholarworks.sfasu.edu/reveller/1001/thumbnail.jp
    corecore