2,241 research outputs found

    Computer program for compressible laminar or turbulent nonsimilar boundary layers

    Get PDF
    Description of computer program for solving two dimensional and axisymmetric forms of compressible boundary layer equations for continuity, mean momentum, and mean total enthalp

    Captured at Millimeter Wavelengths: a Flare from the Classical T Tauri Star DQ Tau

    Get PDF
    For several hours on 2008 April 19 the T Tauri spectroscopic binary DQ Tau was observed to brighten, reaching a maximum detected flux of 468 mJy and likely making it (briefly) the brightest object at 3 mm in the Taurus star-forming region. We present the light curve of a rarely before observed millimeter flare originating in the region around a pre-main-sequence star, and the first from a classical T Tauri star. We discuss the properties and nature of the flaring behavior in the context of pulsed accretion flows (the current picture based largely on studies of this object's optically variable spectrum), as well as magnetospheric re-connection models (a separate theory that predicts millimeter flares for close binaries of high orbital eccentricity). We believe that the flare mechanism is linked to the binary orbit, and therefore periodic. DQ Tau makes a strong case for multi-wavelength follow-up studies, performed in parallel, of future flares to help determine whether magnetospheric and dynamical interactions in a proto-binary system are independent.Comment: 4 pages, Accepted for publication in A&A Letter

    The infrared properties of the new outburst star IRAS 05436-0007 in quiescent phase

    Full text link
    We compiled and investigated the infrared/sub-mm/mm SED of the new outburst star IRAS 05436-0007 in quiescent phase. The star is a flat-spectrum source, with an estimated total luminosity of L_bol ~ 5.6 L_sun, typical of low-mass T Tauri stars. The derived circumstellar mass of 0.5 M_sun is rather high among low-mass YSOs. The observed SED differs from the SEDs of typical T Tauri stars and of 4 well-known EXors, and resembles more the SEDs of FU Orionis objects indicating the presence of a circumstellar envelope. IRAS 05436-0007 seems to be a Class II source with an age of approximately 4x10^5 yr. In this evolutionary stage an accretion disk is already fully developed, though a circumstellar envelope may also be present. Observations of the present outburst will provide additional knowledge on the source.Comment: 4 pages, 4 figures, to be published in Astronomy & Astrophysics Letter

    Experimental Design for the Gemini Planet Imager

    Full text link
    The Gemini Planet Imager (GPI) is a high performance adaptive optics system being designed and built for the Gemini Observatory. GPI is optimized for high contrast imaging, combining precise and accurate wavefront control, diffraction suppression, and a speckle-suppressing science camera with integral field and polarimetry capabilities. The primary science goal for GPI is the direct detection and characterization of young, Jovian-mass exoplanets. For plausible assumptions about the distribution of gas giant properties at large semi-major axes, GPI will be capable of detecting more than 10% of gas giants more massive than 0.5 M_J around stars younger than 100 Myr and nearer than 75 parsecs. For systems younger than 1 Gyr, gas giants more massive than 8 M_J and with semi-major axes greater than 15 AU are detected with completeness greater than 50%. A survey targeting young stars in the solar neighborhood will help determine the formation mechanism of gas giant planets by studying them at ages where planet brightness depends upon formation mechanism. Such a survey will also be sensitive to planets at semi-major axes comparable to the gas giants in our own solar system. In the simple, and idealized, situation in which planets formed by either the "hot-start" model of Burrows et al. (2003) or the core accretion model of Marley et al. (2007), a few tens of detected planets are sufficient to distinguish how planets form.Comment: 15 pages, 9 figures, revised after referee's comments and resubmitted to PAS

    Advanced Water Distribution Modeling and Management

    Get PDF
    Advanced Water Distribution Modeling and Management builds on Haestad Press’ Water Distribution Modeling book. Addressing the modeling process from data collection to application, Advanced Water Distribution Modeling and Management adds extensive material from an international team of experts from both academia and consulting firms and includes topics such as: In-depth coverage of optimization techniques for model calibration, system design, and pump operations. Advanced water quality modeling topics including tank mixing, water quality solution algorithms, sampling techniques, tracer studies, tank design, and maintenance of adequate disinfectant residuals. Integration of SCADA systems with water distribution modeling for estimating model demands, initial conditions, and control settings; forecasting system operations; calibrating extended-period simulation models; streamlining water quality analysis; and estimating water loss during a main break. The essentials of transient analysis including the causes and sources of transients, as well as the potential effects of transients on water distribution systems. Application of GIS technology for skeletonization, demand allocation, and pipe break analysis; discussion of the technological issues that arise when integrating GIS and water distribution modeling; and the current state of the technology. Use of models to assess water system vulnerability and security, respond to emergencies in real-time, simulate contamination events, prioritize physical security improvements, and unravel past contamination events

    Ultraviolet number counts of galaxies from Swift UV/Optical Telescope deep imaging of the Chandra Deep Field South

    Full text link
    Deep Swift UV/Optical Telescope (UVOT) imaging of the Chandra Deep Field South is used to measure galaxy number counts in three near ultraviolet (NUV) filters (uvw2: 1928 A, uvm2: 2246 A, uvw1: 2600 A) and the u band (3645 A). UVOT observations cover the break in the slope of the NUV number counts with greater precision than the number counts by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) and the Galaxy Evolution Explorer (GALEX), spanning a range from 21 < m_AB < 25. Number counts models confirm earlier investigations in favoring models with an evolving galaxy luminosity function.Comment: 20 pages, 6 figures, accepted to Ap
    corecore