NASATECHNICAL MEMORANDUM

COMPUTER PROGRAM FOR COMPRESSIBLE LAMINAR OR TURBULENT
NONSIMILAR BOUNDARY LAYERS
by Barbara A. Hixon, Ivan E. Beckwith, and Dennis M. Bushnell

Langley Research Center
Hampton, Va. 23365

1. Report No. NASA TM X-2140	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle COMPUTER PROGRAM FOR COMPRESSIBLE LAMINAR OR TURBULENT NONSIMILAR BOUNDARY LAYERS		5. Report Date April 1971 6. Performing Organization Code
7. Author(s) Barbara A. Hixon, Ivan E. Beckwith, and Dennis M. Bushnell		8. Performing Organization Report No. $\mathrm{L}-7399$
9. Performing Organization Name and Address NASA Langley Research Center Hampton, Va. 23365		129-04-20-02
		11. Contract or Grant No.
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		13. Type of Report and Period Covered Technical Memorandum
		14. Sponsoring Agency Code
15. Supplementary Notes		
16. Abstract A computer program is described which solves the two-dimensional and axisymmetric forms of the compressible-boundary-layer equations for continuity, mean momentum, and mean total enthalpy by an implicit finite-difference procedure. Turbulent flow is treated by the inclusion of an eddy viscosity model based upon a mixing-length formulation. The eddy conductivity is related to the eddy viscosity by the turbulent Prandtl number which may be an arbitrary function of the distance from the wall. The laminar-boundary-layer equations are recovered when the eddy viscosity is zero. Since a finite-difference procedure is used, the effects of variable wall and edge boundary conditions are easily included by modifying the program inputs.		
17. Key Words (Suggested by Author(s)) Boundary-layer computer program Nonsimilar Compressible Laminar Turbulent Mixing-length model Implicit finite-difference procedure		t - Unlimited
19. Security Classif. (of this repört) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price ${ }^{*}$ 82 $\$ 3.00$

[^0]
CONTENTS

Page
SUMMARY 1
INTRODUCTION 1
SYMBOLS 2
PROBLEM DISCUSSION 7
Basic Partial Differential Equations 7
Transformation to Conventional Similarity Coordinates 10
Numerical Computational Procedure 14
Eddy Viscosity and Turbulent Prandtl Number Formulations 20
Mixing-length relations and eddy-viscosity function for two- dimensional and axisymmetric flows 20
Eddy-viscosity function for flows on infinite swept cylinders 22
Turbulent Prandtl number formulations 23
PROGRAM DESCRIPTION 24
FORTRAN Variable List 24
Description, Flow Charts, and Listings of the Main Program and Subprograms 38
Main program D2630 38
ABCDGS 56
COMPUTE 58
CALCM 60
USAGE 65
Input Description 65
Output Description 69
Sample Case 71
APPENDIX 74
REFERENCES 79

COMPUTER PROGRAM FOR COMPRESSIBLE LAMINAR OR TURBULENT NONSIMILAR BOUNDARY LAYERS

By Barbara A. Hixon, Ivan E. Beckwith, and Dennis M. Bushnell
Langley Research Center

SUMMARY

A computer program is described which solves the two-dimensional and axisymmetric forms of the compressible-boundary-layer equations for continuity, mean momentum, and mean total enthalpy by an implicit finite-difference procedure. Turbulent flow is treated by the inclusion of an eddy viscosity model based upon a mixing-length formulation. The eddy conductivity is related to the eddy viscosity by the turbulent Prandtl number which may be an arbitrary function of the distance from the wall. The laminar-boundary-layer equations are recovered when the eddy viscosity is zero. Since a finite-difference procedure is used, the effects of variable wall and edge boundary conditions are easily included by modifying the program inputs.

INTRODUCTION

Several finite-difference methods are currently available for computing the development of compressible turbulent boundary layers (for example, refs. 1 to 6). The numerical procedures used in these methods are generally different, but results are similar when a common eddy viscosity formulation is employed. Therefore, the main difference between the various methods is in the formulation of the eddy viscosity and turbulent Prandtl number functions used to model the turbulence flux terms appearing in the meañflow equations.

This report describes a computer program developed to solve the compressible-nonsimilar-boundary-layer equations for continuity, mean momentum, and total mean enthalpy for an ideal gas with constant specific heat. This program was used to obtain the results reported in references 7 and 8. An implicit finite-difference procedure similar to the procedures described in references 9 and 10 is used. The program will solve problems with the following flow configurations: (1) two-dimensional, (2) axisymmetric where the boundary-layer thickness is much less than the body radius, and (3) swept infinite-cylinders.

The eddy viscosity is taken as a function of the local boundary-layer thickness, the normal distance from the wall, and the mean velocity gradient in the boundary layer. The formulation for the eddy viscosity is based on the mixing-length models of references 2 and 11. The turbulent Prandtl number may be either a constant or a specified tabulated function of the ratio of the normal distance from the wall to the boundary-layer thickness. By setting the eddy viscosity equal to zero, nonsimilar-laminar-boundarylayer flows can be computed. Since a finite-difference procedure is used, the effects of variable wall and edge boundary conditions and wall blowing or suction are easily included by modifying the program inputs.

The governing partial differential equations and their finite-difference forms are discussed first. Then, the digital computer program is described in detail including the flow charts, program code, and instructions for use with sample input and output.

SYMBOLS

A,B,C empirical constants in $\overline{\mathrm{f}}_{\text {max }}$ expression (see eq. (56a))
$A^{*}, B^{*}, C^{*}, D^{*} \quad$ coefficients in general difference equation for conservation of energy (see eq. (39))
$\hat{A}, \hat{B}, \hat{C}, \hat{D} \quad$ coefficients in general difference equation for g-momentum (see eq. (38))
$\bar{A}, \bar{B}, \bar{C}, \bar{D} \quad$ coefficients in general difference equation for F-momentum (see eq. (25))
$\mathrm{A}_{\mathrm{b}} \quad$ damping constant (see eq. (59))
$A_{d} \quad$ damping length (see eq. (59))
$\mathrm{C}_{\mathrm{f}} \quad$ skin-friction coefficient, $\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \rho_{\mathrm{e}^{\mathrm{u}} \mathrm{e}^{2}}}$
cp specific heat

F dimensionless chordwise velocity profile, u / u_{e}
$\breve{\mathbf{f}} \quad$ mixing-length ratio, function of y / δ (see eq. (51))
$\overline{\mathbf{G}}, \overline{\mathbf{g}} \quad$ coefficients in formula for dependent variables (see eq. (31))
$\hat{\mathbf{G}}, \hat{\mathrm{g}} \quad$ coefficients in formula for dependent variables (see eq. (42))
G^{*}, g^{*}
g

H
H^{*}
h
j

K ratio of successive $\Delta \eta$ steps (see eqs. (22) to (24))
k

L reference length; a constant
l

M Mach number
$\bar{M} \quad$ effective viscosity function for F-momentum equation (see eq. (10b))
m

N
$\mathrm{N}_{\mathrm{Pr}} \quad$ molecular Prandtl number,$\quad c_{\mathrm{p}} \mu / \mathrm{k}$
$\mathrm{N}_{\text {Pr, }} \mathrm{T} \quad$ total turbulent Prandtl number, $\mathrm{c}_{\mathrm{p}} \epsilon / \kappa$
$\mathrm{N}_{\mathrm{Pr}, \mathrm{t}} \quad$ static turbulent Prandtl number, $\mathrm{c}_{\mathrm{p}} \epsilon / \mathrm{k}^{*}$
$\mathrm{N}_{\text {St }} \quad$ Stanton number
n

P pressure gradient parameter (see eq. (10h))
p pressure
$\overline{\mathbf{Q}} \quad$ heat-transfer parameter, $\dot{\mathrm{q}}_{\mathrm{w}} \mathrm{L} /\left(\mu_{\mathrm{S}} \mathrm{H}_{\mathrm{e}}\right)$
$\dot{q} \quad$ heating rate
$R_{e, x} \quad$ Reynolds number based on $x, \frac{\rho_{e} u_{e}}{\mu_{e}}$
$R_{e, \delta^{*}} \quad$ Reynolds number based on displacement thickness, $\frac{\rho_{e} u_{e} \delta^{*}}{\mu_{e}}$
$R_{e, \theta^{*}} \quad$ Reynolds number based on momentum thickness, $\frac{\rho_{e} u_{e} \theta^{*}}{\mu_{e}}$
\mathbf{R}_{S}
r

S

T
$\mathrm{U} \quad$ velocity gradient parameter (see eq. (10g))
u

V transformed normal velocity (see eq. (11))
v mean physical velocity in direction normal to surface (see fig. 1)
w dimensionless body radius (used only when $j=1$), $\quad r_{w} / L$ Sutherland's constant
temperature problems) direction (see fig. 1) mean physical velocity in spanwise direction (see fig. 1) computational grid index in y-direction (see fig. 2) reference Reynolds number, $\frac{\rho_{\mathrm{S}} \sqrt{2 \mathrm{H}_{\mathrm{e}}} \mathrm{L}}{\mu_{\mathrm{S}}}$; a constant
mean physical velocity in streamwise (or chordwise for swept-cylinder
streamwise (or chordwise for swept-cylinder problems) direction in physical coordinate system (see fig. 1)
direction normal to surface in physical coordinate system (see fig. 1)
wall temperature gradient parameter (see eq. (10i))
spanwise direction in physical coordinate system (see fig. 1)
boundary-layer thickness in physical plane, taken where F or $\mathrm{g}=0.995$ displacement thickness, $\int_{0}^{y_{N}}\left(1-\frac{\rho u}{\rho_{e} e_{e}}\right) d y$
eddy viscosity for turbulent flow, $-\frac{\overline{(\rho v)^{\prime} u^{\prime}}}{\partial \bar{u} / \partial y}$
eddy viscosity in spanwise direction
dimensionless enthalpy ratio, H / H_{e}
transformed similarity coordinate (see eq. (8b))
value of η when $F=0.995$
dimensionless enthalpy profile, $\frac{H-H_{W}}{\mathrm{H}_{\mathrm{e}}-\mathrm{H}_{\mathrm{w}}}$
momentum thickness, $\int_{0}^{y_{N}}\left(\frac{\rho u}{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}}}\left(1-\frac{\mathrm{u}}{\mathrm{u}_{\mathrm{e}}}\right) d \mathrm{dy}\right.$
total eddy conductivity for turbulent flow, $-\frac{\left(\overline{(\rho))^{\prime} H^{\top}}\right.}{\partial \overline{\mathrm{H}} / \partial \mathrm{y}}$
sweep angle
molecular viscosity
transformed similarity coordinate (see eq. (8a))
transformed streamwise length parameter (see eq. (10f))
density

σ	error or convergence criteria (see eqs. (34) and (46) to (48))
τ	shear stress
$\varphi_{\mathbf{r}}$	density-viscosity product ratio (see eq. (10a))
Subscripts and superscripts:	
a	average value (see fig. 2 and eqs. (30a) and (30b))
e	edge of boundary layer
F	F profile
g	g profile
i	incompressible value
j	body-shape index
max	maximum value
N	maximum value of n (see fig. 2 and eqs. (35), (44), and (45))
n	index for points in y-direction
$\overline{\mathrm{n}}$	similarity index (see eqs. (8b) and (9b))
0	initial conditions at $\mathrm{x}=\mathrm{x}_{\mathrm{O}}$
r	variable reference value, evaluated at edge condition
res	resultant
s	constant reference value, usually taken as local isentropic stagnation conditions
t	isentropic stagnation value
w	wall
6	

A prime on u, v, w, h, H, or ρ denotes a fluctuating quantity. A bar over primed quantities indicates a time average.

Figure 1.- Coordinate system for swept-leading-edge problem.

PROBLEM DISCUSSION

In this section, the partial differential equations and their finite-difference formulations are described. Also, details of the eddy-viscosity model are given. The basic physics of the problem is discussed, for example, in references 12 and 13.

Basic Partial Differential Equations

The partial differential equations in terms of physical coordinates and mean dimensional flow properties for boundary-layer flow are as follows (see refs. 12 and 13): Continuity

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\rho u r^{j}\right)+\frac{\partial}{\partial y}\left(\rho v r^{j}\right)=0 \tag{1}
\end{equation*}
$$

where $j=1$ for axisymmetric bodies and $j=0$ for two-dimensional bodies and infinite swept cylinders.
x-momentum

$$
\begin{equation*}
\rho u \frac{\partial u}{\partial x}+\rho v \frac{\partial u}{\partial y}=-\frac{d p}{d x}+\frac{\partial}{\partial y}\left[\mu\left(1+\frac{\epsilon}{\mu}\right) \frac{\partial u}{\partial y}\right] \tag{2}
\end{equation*}
$$

where it is assumed that $\mathrm{p}=\mathrm{p}(\mathrm{x})$.
In order to compute the flow on an infinite swept cylinder (i.e., $\left.\frac{\partial}{\partial z}()=0\right)$, it is necessary to incorporate the spanwise momentum equation. The spanwise coordinate is taken as z and the spanwise velocity as w; hence,
z-momentum

$$
\begin{equation*}
\rho \mathrm{u} \frac{\partial \mathrm{w}}{\partial \mathrm{x}}+\rho \mathrm{v} \frac{\partial \mathrm{w}}{\partial \mathrm{y}}=\frac{\partial}{\partial \mathbf{y}}\left[\mu\left(1+\frac{\epsilon_{\mathrm{z}}}{\mu}\right) \frac{\partial \mathrm{w}}{\partial \mathrm{y}}\right] \tag{3}
\end{equation*}
$$

Note that $w=0$ for all cases except when a swept-cylinder problem is specified.
Total energy

$$
\begin{equation*}
\rho u \frac{\partial H}{\partial x}+\rho v \frac{\partial H}{\partial y}=\frac{\partial}{\partial y}\left\{\frac{\mu}{N_{\operatorname{Pr}}}\left[\left(1+\frac{\epsilon}{\mu} \frac{N_{\operatorname{Pr}}}{N_{\operatorname{Pr}, T}}\right) \frac{\partial H}{\partial y}-\left(1-N_{\operatorname{Pr}}\right)\left(u \frac{\partial u}{\partial y}+w \frac{\partial w}{\partial y}\right)\right]\right\} \tag{4}
\end{equation*}
$$

The eddy viscosity ϵ and turbulent Prandtl number $\mathrm{N}_{\mathrm{Pr}, \mathrm{T}}$ are supplied as simple functions of the local flow properties (within the boundary layer and/or in the free stream) and the distance from the wall. All flow quantities shown are time mean values. For an axisymmetric body, r is the dimensionless local radius of the body $\left(r=r_{w} / L\right)$, and the assumption is made that the boundary-layer thickness δ is much less than r_{w}.

Solutions to equations (1) to (4) are sought in terms of u, v, w, and H. Auxiliary equations for the other variables are shown subsequently. Besides initial conditions (at $x=x_{0}$), the boundary conditions are:
$y=0$ (wall or surface of body)

$$
\left.\begin{array}{l}
u=\mathrm{w}=0 \tag{5a}\\
\mathrm{v}=\mathrm{v}_{\mathrm{w}}(\mathrm{x}) \\
\mathrm{H}=\mathrm{H}_{\mathrm{w}}(\mathrm{x})
\end{array}\right\}
$$

(Note that the adiabatic-wall boundary condition is not included in the program described herein and only air-to-air blowing can be considered.)

$$
\left.\begin{array}{ll}
u \rightarrow u_{e}(x) \tag{5b}\\
w \rightarrow w_{e} & (a \text { constant }) \\
H \rightarrow H_{e} & (a \text { constant })
\end{array}\right\}
$$

For convenience, dimensionless profile functions are introduced:

$$
\left.\begin{array}{l}
\mathrm{F}=\frac{\mathrm{u}}{\mathrm{u}_{\mathrm{e}}} \tag{6}\\
\mathrm{~g}=\frac{\mathrm{w}}{\mathrm{w}_{\mathrm{e}}} \\
\theta=\frac{\mathrm{H}-\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}-\mathrm{H}_{\mathrm{w}}} \equiv \frac{\zeta-\zeta_{\mathrm{w}}}{1-\zeta_{\mathrm{w}}}
\end{array}\right\}
$$

where $u_{e}=u_{e}(x), \quad \zeta_{W}=\zeta_{w}(x)$, and w_{e} and H_{e} are constants. Because of conditions (5a) and (5b), the boundary conditions for these new variables are
$\underline{y}=0$

$$
\begin{equation*}
\mathbf{F}_{\mathrm{w}}=\mathbf{g}_{\mathrm{w}}=\theta_{\mathrm{w}}=0 \tag{7a}
\end{equation*}
$$

$\underline{y} \rightarrow \infty$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{e}}=\mathrm{g}_{\mathrm{e}}=\theta_{\mathrm{e}}=1 \tag{7b}
\end{equation*}
$$

Equations (1) to (4) may then be written as
Continuity

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\rho u_{e} F r^{j}\right)+\frac{\partial}{\partial y}\left(\rho v r^{j}\right)=0 \tag{1a}
\end{equation*}
$$

F-momentum

$$
\begin{equation*}
\rho \mathrm{u} \frac{\partial \mathrm{~F}}{\partial \mathrm{x}}+\rho \mathrm{v} \frac{\partial \mathrm{~F}}{\partial \mathrm{y}}=-\rho \mathrm{F}^{2} \frac{\mathrm{~d} u_{\mathrm{e}}}{\mathrm{dx}}-\frac{1}{\mathrm{u}_{\mathrm{e}}} \frac{\mathrm{dp}}{\mathrm{dx}}+\frac{\partial}{\partial y}\left[\mu\left(1+\frac{\epsilon}{\mu}\right) \frac{\partial \mathrm{F}}{\partial \mathrm{y}}\right] \tag{2a}
\end{equation*}
$$

g-momentum

$$
\begin{equation*}
\rho \mathrm{u} \frac{\partial \mathrm{~g}}{\partial \mathrm{x}}+\rho \mathrm{v} \frac{\partial \mathrm{~g}}{\partial \mathrm{y}}=\frac{\partial}{\partial \mathrm{y}}\left[\mu\left(1+\frac{\epsilon_{\mathrm{z}}}{\mu}\right) \frac{\partial \mathrm{g}}{\partial \mathrm{y}}\right] \tag{3a}
\end{equation*}
$$

Total energy

$$
\begin{align*}
& \rho u \frac{\partial \theta}{\partial x}+\rho v \frac{\partial \theta}{\partial y}=-\rho u \frac{1-\theta}{1-\zeta_{w}} \frac{d \zeta_{w}}{d x}+\frac{\partial}{\partial y}\left\{\frac { \mu } { N _ { \operatorname { P r } } } \left[\left(1+\frac{\epsilon}{\mu} \frac{N_{\operatorname{Pr}}}{N_{\operatorname{Pr}, \mathrm{T}}}\right) \frac{\partial \theta}{\partial \mathrm{y}}\right.\right. \\
& \left.\left.-\frac{1-\mathrm{N}_{\mathrm{Pr}}}{1-\zeta_{\mathrm{w}}}\left(\frac{u_{e}}{2 \mathrm{H}_{\mathrm{e}}} \frac{\partial \mathrm{~F}^{2}}{\partial \mathrm{y}}+\frac{\mathrm{we}^{2}}{2 \mathrm{H}_{\mathrm{e}}} \frac{\partial \mathrm{~g}^{2}}{\partial \mathrm{y}}\right)\right]\right\} \tag{4a}
\end{align*}
$$

Transformation to Conventional Similarity Coordinates

A finite-difference computing procedure will be used to solve equations (1a) to (4a). In order to keep the number of steps across the boundary layer (i.e., in the y-direction) approximately constant and also to take advantage of similar profile shapes which exist for certain conditions, a similarity transformation of x and y is introduced as follows:

$$
\begin{align*}
& \xi\left(\frac{\mathrm{x}}{\mathrm{~L}}\right)=\mathrm{R}_{\mathrm{S}} \int_{0}^{\mathrm{x} / \mathrm{L}} \frac{(\rho \mu)_{\mathrm{e}}}{(\rho \mu)_{\mathrm{S}}} \frac{\mathrm{u}_{\mathrm{e}}}{\sqrt{2 \mathrm{H}_{\mathrm{e}}}} \mathrm{r}^{2 \mathrm{j}} \mathrm{~d} \frac{\mathrm{x}}{\mathrm{~L}} \tag{8a}\\
& \eta\left(\frac{\mathrm{x}}{\mathrm{~L}}, \frac{\mathrm{y}}{\mathrm{~L}}\right)=\mathrm{R}_{\mathrm{S}} \frac{\mathrm{u}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}}{(2 \xi)^{\bar{n}}} \mathrm{r}^{\mathrm{j}} \int_{0}^{\mathrm{y} / \mathrm{L}} \frac{\rho}{\rho_{\mathrm{S}}} \mathrm{~d} \frac{\mathrm{y}}{\mathrm{~L}} \tag{8b}
\end{align*}
$$

The quantity $\overline{\mathrm{n}}$ is taken as a constant, generally equal to about 0.8 for turbulent flows and 0.5 for laminar flows.

Since $\partial \xi / \partial y=0$, the general transformation formulas from equations (8a) and (8b) are

$$
\begin{align*}
& \frac{\partial}{\partial \mathrm{x}}=\frac{(\rho \mu) \mathrm{e}^{u_{e}}}{\mu_{\mathrm{s}}^{2}} \mathrm{r}^{2 \mathrm{j}} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial \mathrm{x}} \frac{\partial}{\partial \eta} \tag{9a}\\
& \frac{\partial}{\partial \mathrm{y}}=\frac{\rho \mathrm{u}_{\mathrm{e}}}{\mu_{\mathrm{s}}} \frac{\mathrm{r}^{\mathrm{j}}}{(2 \xi)^{\bar{n}}} \frac{\partial}{\partial \eta} \tag{9b}
\end{align*}
$$

For the sake of brevity, several special definitions are introduced:

$$
\begin{align*}
& \varphi_{\mathrm{r}}=\frac{\rho \mu}{(\rho \mu)_{\mathrm{e}}} \tag{10a}\\
& \overline{\mathrm{M}}=\varphi_{\mathrm{r}}\left(1+\frac{\epsilon}{\mu}\right) \tag{10b}\\
& \hat{\mathbf{M}}=\varphi_{\mathbf{r}}\left(1+\frac{\epsilon_{\mathrm{Z}}}{\mu}\right) \tag{10c}\\
& \mathrm{M}^{*}=\frac{\varphi_{\mathrm{r}}}{\mathrm{~N}_{\mathrm{Pr}}}\left(1+\frac{\epsilon}{\mu} \frac{\mathrm{N}_{\mathrm{Pr}}}{\mathrm{~N}_{\mathrm{Pr}, \mathrm{~T}}}\right) \tag{10d}\\
& \mathrm{M}^{\prime}=\frac{\varphi_{\mathbf{r}}}{\mathrm{N}_{\mathrm{Pr}}} \frac{1-\mathrm{N}_{\mathrm{Pr}}}{1-\zeta_{\mathrm{W}}} \tag{10e}\\
& \bar{\xi}=(2 \xi)^{2 \overline{\mathrm{n}}} \tag{10f}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{U}=\frac{1}{\mathrm{u}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}} \frac{\mathrm{~d}\left(\mathrm{u}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}\right)}{\mathrm{d} \xi} \tag{10~g}\\
& \mathrm{P}=\frac{1}{\rho_{\mathrm{e}^{\mathrm{u}}}{ }^{2}} \frac{\mathrm{dp}}{\mathrm{~d} \xi} \tag{10h}\\
& \mathrm{Z}=\frac{1}{1-\zeta_{\mathrm{w}}} \frac{\mathrm{~d} \zeta_{\mathrm{w}}}{\mathrm{~d} \xi} \tag{10i}
\end{align*}
$$

In the present computer program $P=-U$, which requires constant entropy flow external to the boundary layer. When the entropy is not constant, $\mathbf{P} \neq-\mathrm{U}$ and the external flow conditions would be determined from an iteration to balance the mass flow in the boundary layer with that of the upstream inviscid flow. (See ref. 14.)

The transformed normal velocity is defined as

$$
\begin{equation*}
V=\frac{\mu_{s}{ }^{2 \bar{\xi}}}{(\rho \mu) e^{u} e^{r^{2 j}}}\left[F \frac{\partial \eta}{\partial x}+\frac{\rho v r^{j}}{\mu_{s}(2 \xi)^{\bar{n}}}\right] \tag{11}
\end{equation*}
$$

Application of equations (9a) and (9b) to equations (1a) to (4a) then results in (see ref. 9)

Continuity

$$
\begin{equation*}
\bar{\xi} \frac{\partial F}{\partial \xi}+\frac{\partial V}{\partial \eta}+\bar{\xi} F \frac{\bar{n}}{\xi}=0 \tag{12}
\end{equation*}
$$

F-momentum

$$
\begin{equation*}
\bar{\xi} \mathrm{F} \frac{\partial \mathrm{~F}}{\partial \xi}+\mathrm{V} \frac{\partial \mathrm{~F}}{\partial \eta}=-\bar{\xi}\left(\mathrm{UF}{ }^{2}+\mathrm{P} \frac{\rho_{\mathrm{e}}}{\rho}\right)+\frac{\partial}{\partial \eta}\left(\overline{\mathrm{M}} \frac{\partial \mathrm{~F}}{\partial \eta}\right) \tag{13}
\end{equation*}
$$

g-momentum

$$
\begin{equation*}
\bar{\xi} \mathrm{F} \frac{\partial \mathrm{~g}}{\partial \xi}+\mathrm{V} \frac{\partial \mathrm{~g}}{\partial \eta}=\frac{\partial}{\partial \eta}\left(\hat{\mathrm{M}} \frac{\partial \mathrm{~g}}{\partial \eta}\right) \tag{14}
\end{equation*}
$$

Total energy

$$
\begin{equation*}
\bar{\xi} F \frac{\partial \theta}{\partial \xi}+\mathrm{V} \frac{\partial \theta}{\partial \eta}=-\bar{\xi} \mathrm{ZF}(1-\theta)+\frac{\partial}{\partial \eta}\left[\mathrm{M}^{*} \frac{\partial \theta}{\partial \eta}-\mathrm{M}^{*}\left(\frac{\mathrm{u}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}} \frac{\partial \mathrm{~F}^{2}}{\partial \eta}+\frac{\mathrm{w}_{\mathrm{e}}{ }^{2}}{2 \mathrm{H}_{\mathrm{e}}} \frac{\partial \mathrm{~g}^{2}}{\partial \eta}\right)\right] \tag{15}
\end{equation*}
$$

The boundary conditions on the profile functions (eqs. (7a) and (7b)) are restated as follows:
$\eta=0$

$$
\begin{align*}
& \mathrm{F}_{\mathrm{w}}=\mathrm{g}_{\mathrm{w}}=\theta_{\mathrm{w}}=0 \\
& \mathrm{v}_{\mathrm{w}}=\left\{\begin{array}{l}
0 \text { or } \\
\mathrm{v}_{\mathrm{w}}(\mathrm{x}), \text { specified function }
\end{array}\right\} \tag{16a}
\end{align*}
$$

$\eta=\eta_{\mathrm{e}}$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{e}}=\mathrm{g}_{\mathrm{e}}=\theta_{\mathrm{e}}=1.0 \pm \text { Error criteria } \tag{16b}
\end{equation*}
$$

To make the system given by equations (12) to (15) determinate, several auxiliary functions are required. The following are given functions of x :

$$
\begin{align*}
& \frac{\mathrm{u}_{\mathrm{e}}}{\sqrt{2 \mathrm{H}_{\mathrm{e}}}}=\frac{\mathrm{u}_{\mathrm{e}}}{\sqrt{2 \mathrm{H}_{\mathrm{e}}}}(\mathrm{x}) \\
& \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{S}}}=\frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{S}}}(\mathrm{x}) \\
& \mathrm{r}=\mathrm{r}(\mathrm{x}) \tag{17a}\\
& \zeta_{\mathrm{w}}=\zeta_{\mathrm{w}}(\mathrm{x}) \\
& \frac{\mathrm{p}_{\mathrm{e}}}{\mathrm{p}_{\mathrm{S}}}=\frac{\mathrm{p}_{\mathrm{e}}}{\mathrm{p}_{\mathrm{S}}}(\mathrm{x})
\end{align*}
$$

To avoid problems in numerical differentiation for sparse input data, the following derivatives can also be specified:

$$
\left.\begin{array}{l}
\frac{d\left(u_{e} / \sqrt{2 \mathrm{H}_{e}}\right)}{d\left(\frac{x}{L}\right)}=\frac{d\left(u_{e} / \sqrt{2 \mathrm{H}_{e}}\right)}{d\left(\frac{x}{L}\right)}(x) \tag{17b}\\
\frac{d \zeta_{w}}{d\left(\frac{x}{L}\right)}=\frac{d \zeta_{w}}{d\left(\frac{x}{L}\right)}(x)
\end{array}\right\}
$$

For a perfect gas with constant specific heats, the static enthalpy ratio, computed from profile functions, is

$$
\begin{equation*}
\frac{\mathrm{h}}{\mathrm{~h}_{\mathrm{e}}} \equiv \frac{\rho_{\mathrm{e}}}{\rho}=\frac{\left(1-\zeta_{\mathrm{w}}\right) \theta+\zeta_{\mathrm{w}}-\frac{\mathrm{u}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}} \mathrm{~F}^{2}-\frac{\mathrm{w}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}} \mathrm{~g}^{2}}{1-\frac{\mathrm{u}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}}-\frac{\mathrm{w}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}}} \tag{18}
\end{equation*}
$$

Sutherland's viscosity relation is used in the density-viscosity product ratio (eq. (10a)) to give

$$
\begin{equation*}
\varphi_{\mathrm{r}}=\left(\frac{\mathrm{h} / \mathrm{H}_{\mathrm{e}}}{\mathrm{~h}_{\mathrm{e}} / \mathrm{H}_{\mathrm{e}}}\right)^{1 / 2} \frac{\frac{\mathrm{~h}_{\mathrm{e}}}{\mathrm{H}_{\mathrm{e}}}+\frac{\mathrm{S}}{\mathrm{H}_{\mathrm{e}}}}{\frac{\mathrm{~h}}{\mathrm{H}_{\mathrm{e}}}+\frac{\mathrm{S}}{\mathrm{H}_{\mathrm{e}}}} \tag{19}
\end{equation*}
$$

which can be utilized for various diatomic gases. The value of Sutherland's constant S would depend on the gas and the temperature range of the problem. The enthalpy ratios in equation (19) are

$$
\begin{equation*}
\frac{\mathrm{h}}{\mathrm{H}_{\mathrm{e}}}=\left(1-\zeta_{\mathrm{W}}\right) \theta+\zeta_{\mathrm{w}}-\frac{\mathrm{u}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}} \mathrm{~F}^{2}-\frac{\mathrm{w}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}} \mathrm{~g}^{2} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{h}_{\mathrm{e}}}{\mathrm{H}_{\mathrm{e}}}=1-\frac{\mathrm{u}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}}-\frac{\mathrm{w}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}} \tag{21}
\end{equation*}
$$

where
$\mathrm{N}_{\mathrm{Pr}}=$ Constant
$\mathrm{N}_{\mathrm{Pr}, \mathrm{T}} \quad$ either a constant or a specified function of y / δ
$\frac{\epsilon}{\mu} \quad$ function of profile parameters and y / δ
$\delta \quad$ value of y where F or $\mathrm{g}=0.995$ (note that this is not the asymptotic boundary condition on the computed profiles)
$\xi=\xi\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$ (see eq. (8a))

The system of equations (12) to (15) is solved by an implicit finite-difference procedure. The grid to be used and the node notation is illustrated in figure 2. To increase the accuracy and efficiency, a variable grid size in the η - and ξ-directions may be used. The initial distribution of $\Delta \eta$ will generally be held fixed for a given problem.

As illustrated in figure 2, the letter " a " indicates the average value of a quantity between the two x-locations under consideration and the notation " $a / 2$ " indicates the average value of a quantity at the four adjacent node points.

In the present procedure, the solution is advanced downstream in the x - or ξ-direction by redefining the $\mathrm{m}=2$ values as $\mathrm{m}=1$ values and a new $\mathrm{m}=2$ station is chosen a distance $\Delta \xi$ downstream; that is, a two-point difference scheme in the x or ξ-direction is used.

It can be seen that if K is a constant, the successive values of $\Delta \eta$ form a geometric progression. Hence

$$
\begin{equation*}
\Delta \eta_{\mathrm{n}}=\mathrm{K}^{\mathrm{n}-1} \Delta \eta_{1} \tag{22}
\end{equation*}
$$

Since the total number of $\Delta \eta$ steps across the boundary layer is $N-1$, the size of the last step at $\mathrm{n}=\mathrm{N}-1$ is

$$
\begin{equation*}
\Delta \eta_{\mathrm{N}-1}=\mathrm{K}^{\mathrm{N}-2} \Delta \eta_{1} \tag{23}
\end{equation*}
$$

The thickness of the boundary layer η_{e} is given by

$$
\begin{equation*}
\eta_{\mathrm{e}}=\Delta \eta_{1} \frac{1-\mathrm{K}^{\mathrm{N}-1}}{1-\mathrm{K}} \tag{24}
\end{equation*}
$$

Thus, if $\eta_{e}, \Delta \eta_{1}$, and the number of steps $(N-1)$ are specified, K and $\Delta \eta_{N-1}$ can be determined. Note that if $\Delta \eta=$ Constant is desired, $K=1.0$. Generally, the value of K will be a constant slightly greater than 1.0. (The value $K=1.02$ is usually used.)

The input is specified at station $m=1$ from $n=1$ to $n=N$ from which values of all variables are to be computed at the next station $(\mathrm{m}=2)$. Equation (12) with $\frac{\partial F}{\partial \xi}=0$ is used to obtain initial values of V. The various derivatives in equations (12) to (15) are replaced by linear difference quotients (see refs. 9 and 10) and the equations are evaluated at the intermediate station. Consider first the F-momentum equation (eq. (13)). At point 3a, the difference equation becomes

$$
\begin{aligned}
\bar{\xi}_{\mathrm{a}} \mathrm{~F}_{3 \mathrm{a}} & \frac{\mathrm{~F}_{2,3}-\mathrm{F}_{1,3}}{\Delta \xi}+\frac{\mathrm{V}_{3, \mathrm{a}}}{2} \frac{\mathrm{~F}_{1,4}+\mathrm{F}_{2,4}-\mathrm{F}_{1,2}-\mathrm{F}_{2,2}}{\Delta \eta_{2}+\Delta \eta_{3}} \\
& =-\bar{\xi}_{\mathrm{a}}\left[\mathrm{U}_{\mathrm{a}} \mathrm{~F}_{3 \mathrm{a}}{ }^{2}+\mathrm{P}_{\mathrm{a}}\left(\frac{\rho_{\mathrm{e}}}{\rho}\right)_{3 \mathrm{a}}\right]+\frac{\overline{\mathrm{M}}_{3} \frac{\mathrm{~F}_{2,4}+\mathrm{F}_{1,4}-\mathrm{F}_{1,3}-\mathrm{F}_{2,3}}{2 \Delta \eta_{3}}-\bar{M}_{2 \frac{\mathrm{a}}{}} \frac{\mathrm{~F}_{2,3}+\mathrm{F}_{1,3}-\mathrm{F}_{2,2}-\mathrm{F}_{1,2}}{2 \Delta \eta_{2}}}{\frac{1}{2}\left(\Delta \eta_{3}+\Delta \eta_{2}\right)}
\end{aligned}
$$

The coefficients of the unknown quantities $\mathrm{F}_{2,4}, \quad \mathrm{~F}_{2,3}$, and $\mathrm{F}_{2,2}$ are collected and equation (13) evaluated at point 3a may be written as

$$
\overline{\mathrm{A}}_{3} \mathrm{~F}_{2,4}+\overline{\mathrm{B}}_{3} \mathrm{~F}_{2,3}+\overline{\mathrm{C}}_{3} \mathrm{~F}_{2,2}=\overline{\mathrm{D}}_{3}
$$

The general form of this equation is then

$$
\begin{equation*}
\overline{\mathrm{A}}_{\mathrm{n}} \mathrm{~F}_{2, \mathrm{n}+1}+\overline{\mathrm{B}}_{\mathrm{n}} \mathrm{~F}_{2, \mathrm{n}}+\overline{\mathrm{C}}_{\mathrm{n}} \mathrm{~F}_{2, \mathrm{n}-1}=\overline{\mathrm{D}}_{\mathrm{n}} \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
& \overline{\mathrm{A}}_{\mathrm{n}}=\frac{\mathrm{V}_{\mathrm{na}}}{2\left(\Delta \eta_{\mathrm{n}}+\Delta \eta_{\mathrm{n}-1}\right)} \frac{\overline{\mathrm{M}}_{\mathrm{n}} \frac{\mathrm{a}}{2}\left(\frac{2}{1+\mathrm{K}}\right)}{2 \Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}} \tag{26}\\
& \overline{\mathrm{~B}}_{\mathrm{n}}=\frac{\bar{\xi}_{\mathrm{a}}}{\Delta \xi} \mathrm{~F}_{\mathrm{na}}+\frac{\overline{\mathrm{M}}_{\mathrm{n} \frac{\mathrm{a}}{}}\left(\frac{2}{1+\mathrm{K}}\right)+\overline{\mathrm{M}}_{(\mathrm{n}-1)} \frac{\mathrm{a}}{2}\left(\frac{2 \mathrm{~K}}{1+\mathrm{K}}\right)}{2 \Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}} \tag{27}\\
& \overline{\mathrm{C}}_{\mathrm{n}}=-\left[\frac{\mathrm{V}_{\mathrm{na}}}{2\left(\Delta \eta_{\mathrm{n}}+\Delta \eta_{\mathrm{n}-1}\right)}+\frac{\overline{\mathrm{M}}_{\mathrm{n}} \frac{\mathrm{a}}{2}\left(\frac{2 \mathrm{~K}}{1+\mathrm{K}}\right)}{2 \Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}}\right] \tag{28}\\
& \bar{D}_{n}=-\bar{A}_{n} F_{1, n+1}+\left[\frac{\bar{\xi}_{a}}{\Delta \xi} F_{n a}-\frac{\bar{M}_{n} \frac{a}{2}\left(\frac{2}{1+K}\right)+\bar{M}_{(n-1)} \frac{\mathrm{a}}{2}\left(\frac{2 K}{1+\mathrm{K}}\right)}{2 \Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}}\right] \mathrm{F}_{1, \mathrm{n}} \\
& -\bar{C}_{n} F_{1, n-1}-(\bar{\xi} \mathrm{U})_{a} F_{n a}{ }^{2}-(\bar{\xi} P)_{a}\left(\frac{\rho}{\rho}\right)_{n a} \tag{29}
\end{align*}
$$

In equations (26) to (29), any function that depends only on ξ is denoted by subscript a, which indicates the average value of the function between stations 1 and 2 . Conditions at stations 1 and 2 are updated as the solution proceeds in the x-direction by a general iteration procedure. For the first iteration in this procedure, the " a " or average values of quantities in the $\bar{A}_{n}, \bar{B}_{n}, \bar{C}_{n}$, and \bar{D}_{n} functions are evaluated at the $m=1$ station. On successive iterations, the " a " values are updated using the latest values from the $m=2$ station; that is, the " a " values are taken as simple numerical averages of the appropriate node points. Examples of these are as follows:

$$
\left.\begin{array}{l}
F_{n a}=\frac{1}{2}\left(F_{1, n}+F_{2, n}\right) \tag{30a}\\
F_{n \frac{a}{2}}=\frac{1}{2}\left[F_{(n+1) a}+F_{n a}\right]
\end{array}\right\}
$$

Hence,

$$
\begin{equation*}
\mathrm{F}_{\mathrm{n}} \frac{\mathrm{a}}{2}=\frac{1}{4}\left(\mathrm{~F}_{1, \mathrm{n}+1}+\mathrm{F}_{2, \mathrm{n}+1}+\mathrm{F}_{1, \mathrm{n}}+\mathrm{F}_{2, \mathrm{n}}\right) \tag{30b}
\end{equation*}
$$

Since boundary conditions are specified at $n=1$ and $n=N$, equation (25) represents a system of $N-2$ equations with $N-2$ unknowns (the values of $\mathrm{F}_{2, n}$ from $\mathrm{n}=2$ to $\mathrm{n}=\mathrm{N}-1$). Since the matrix of the system given by equation (25) is tridiagonal, the unknown F_{2} values are easily obtained by successive elimination of unknowns with the formula (see ref. 15)

$$
\begin{equation*}
\mathrm{F}_{2, \mathrm{n}}=\overline{\mathrm{G}}_{\mathrm{n}} \mathrm{~F}_{2, \mathrm{n}+1}+\overline{\mathrm{g}}_{\mathrm{n}} \tag{31}
\end{equation*}
$$

which is applied by starting at the outer boundary ($\mathrm{n}=\mathrm{N}$) where $\mathrm{F}_{\mathrm{e}} \approx 1.0$ and proceeding down to the wall $(n=1)$ where $F=0$. The functions \bar{G}_{n} and \bar{g}_{n} are computed from the following recursion formulas:

$$
\left.\begin{array}{c}
\overline{\mathrm{G}}_{\mathrm{n}}=\frac{-\overline{\mathrm{A}}_{\mathrm{n}}}{\overline{\bar{B}}_{\mathrm{n}}+\overline{\mathrm{C}}_{\mathrm{n}} \overline{\mathrm{G}}_{\mathrm{n}-1}} \\
\overline{\mathrm{~g}}_{\mathrm{n}}=\frac{\overline{\mathrm{D}}_{\mathrm{n}}-\overline{\mathrm{C}}_{\mathrm{n}} \overline{\mathrm{~g}}_{\mathrm{n}-1}}{\overline{\mathrm{~B}}_{\mathrm{n}}+\overline{\mathrm{C}}_{\mathrm{n}} \overline{\mathrm{G}}_{\mathrm{n}-1}} \tag{32}
\end{array}\right\}
$$

From the wall boundary condition $\left(\mathrm{F}_{2,1}=0\right)$ applied to equation $(31), \quad \overline{\mathrm{G}}_{1}=\overline{\mathrm{g}}_{1}=0$. Therefore, from the recursion relations (32),

$$
\left.\begin{array}{l}
\overline{\mathrm{G}}_{2}=\frac{-\overline{\mathrm{A}}_{2}}{\overline{\mathrm{~B}}_{2}} \tag{33}\\
\overline{\mathrm{~g}}_{2}=\frac{\overline{\mathrm{D}}_{2}}{\overline{\mathrm{~B}}_{2}}
\end{array}\right\}
$$

The functions $\overline{\mathrm{G}}_{\mathrm{n}}$ and $\overline{\mathrm{g}}_{\mathrm{n}}$ are computed from equations (32) by starting at the wall (actually at $n=2$) and working out to the outer boundary ($n=N-1$). Equation (31) then supplies the required values of $F_{2, n}$ by starting at the outer edge ($n=N-1$) and proceeding down to the wall $(\mathrm{n}=2)$. Before this procedure can be completed, it is necessary to know the number of equations (or $\Delta \eta$ steps) to be used. The correct number of steps is determined from the physical requirement that

$$
\begin{equation*}
\left(\frac{\partial \mathrm{F}}{\partial \eta}\right)_{\eta=\eta_{\mathrm{e}}} \leqq \sigma_{\mathrm{e}} \tag{34}
\end{equation*}
$$

where σ_{e} is some small specified error criterion. Equation (34) is written in finitedifference form as

$$
\mathrm{F}_{2, \mathrm{~N}}-\mathrm{F}_{2, \mathrm{~N}-1} \leqq \Delta \eta_{\mathrm{N}-1} \sigma_{\mathrm{e}}
$$

From equation (31),

$$
\mathrm{F}_{\mathrm{N}-1}=\overline{\mathrm{G}}_{\mathrm{N}-1} \mathrm{~F}_{\mathrm{N}}+\overline{\mathrm{g}}_{\mathrm{N}-1}
$$

Then, since $F_{N}=F_{e} \approx 1.0$, the values of \bar{G}_{N-1} and \bar{g}_{N-1} must satisfy the inequality

$$
\begin{equation*}
\left|\mathrm{F}_{\mathrm{e}}\left(1-\overline{\mathrm{G}}_{\mathrm{N}-1}\right)-\overline{\mathrm{g}}_{\mathrm{N}-1}\right| \leqq\left|\Delta \eta_{\mathrm{N}-1} \sigma_{\mathrm{e}}\right| \tag{35}
\end{equation*}
$$

where F_{e} and σ_{e} are specified and $\Delta \eta_{\mathrm{N}-1}$ is computed from equation (23). Hence the value of $n=N-1$ is obtained by inserting successive values of \bar{G}_{n} and \bar{g}_{n} from equations (32) (as the suspected neighborhood of $n \approx N-10$, say, is approached) into inequality (35).

After the set of $\mathrm{F}_{2, \mathrm{n}}$ values is obtained, the values of V_{na} are updated by using equation (12), which is written in the appropriate finite-difference form evaluated at $n \frac{a}{2}$ (average of four adjacent node points). For example, at $2 \frac{\mathrm{a}}{2}$ there is obtained

$$
\begin{equation*}
\mathrm{V}_{3 \mathrm{a}}=\mathrm{V}_{2 \mathrm{a}}-\frac{\Delta \eta_{2} \bar{\xi}_{\mathrm{a}}}{2 \Delta \xi}\left(\mathrm{~F}_{2,3}+\mathrm{F}_{2,2}-\mathrm{F}_{1,3}-\mathrm{F}_{1,2}\right)-\Delta \eta_{2} \bar{\xi}_{\mathrm{a}} \frac{\overline{\mathrm{n}}}{\xi_{\mathrm{a}}} \mathrm{~F}_{2 \frac{\mathrm{a}}{2}} \tag{36}
\end{equation*}
$$

As noted previously, input values of $V_{n a}$ for the first iteration at the input ξ station are computed from equation (12) by dropping derivatives with respect to ξ and evaluating at $m=1$. The result is

$$
\begin{equation*}
\mathrm{V}_{3 \mathrm{a}}=\mathrm{V}_{2 \mathrm{a}}-\frac{1}{2} \Delta \eta_{2} \bar{\xi}_{1}\left(\mathrm{~F}_{1,3}+\mathrm{F}_{1,2}\right) \frac{\overline{\mathrm{n}}}{\xi_{1}} \tag{37}
\end{equation*}
$$

General expressions for equations (36) and (37) follow from inspection. The values of V_{na} are computed by starting at the known boundary condition $\mathrm{V}_{1 a}$ (that is, $\mathrm{V}_{\mathrm{w}, \mathrm{a}}$) and applying the general form of equation (36) (or eq. (37) for the iirst iteration at the input station) successively out to $n=N$.

With these improved values of V_{na} from equation (36), the first approximations of $g_{2, n}$ and $\theta_{2, n}$ are computed from equations (14) and (15). These equations are written in finite-difference form by a procedure identical to that illustrated for the F-momentum equation. The results for equations (14) and (15) are

$$
\begin{align*}
& \hat{\mathrm{A}}_{\mathrm{n}}^{2, \mathrm{n}+1} \tag{38}\\
& +\hat{\mathrm{B}}_{\mathrm{n}} \mathrm{~g}_{2, \mathrm{n}}+\hat{\mathrm{C}}_{\mathrm{n}} \mathrm{~g}_{2, \mathrm{n}-1}=\hat{\mathrm{D}}_{\mathrm{n}} \tag{39}\\
& \mathrm{~A}_{\mathrm{n}}^{*} \theta_{2, \mathrm{n}+1}+\mathrm{B}_{\mathrm{n}}^{*} \theta_{2, \mathrm{n}}+\mathrm{C}_{\mathrm{n}}^{*} \theta_{2, \mathrm{n}-1}=\mathrm{D}_{\mathrm{n}}^{*}
\end{align*}
$$

The expressions for $\hat{\mathrm{A}}_{\mathrm{n}}, \hat{\mathrm{B}}_{\mathrm{n}}, \hat{\mathrm{C}}_{\mathrm{n}}$ and $\mathrm{A}_{\mathrm{n}}^{*}, \mathrm{~B}_{\mathrm{n}}^{*}, \mathrm{C}_{\mathrm{n}}^{*}$ are identical to those for equation (13), as given by equations (26), (27), and (28), except that the $\overline{\mathrm{M}}$ values are replaced by $\hat{\mathrm{M}}$ and M^{*}, respectively. The " D " quantities are computed from the following equations:

$$
\begin{align*}
& \hat{\mathrm{D}}_{\mathrm{n}}=-\hat{\mathrm{A}}_{\mathrm{n}} \mathrm{~g}_{1, \mathrm{n}+1}+\left[\frac{\bar{\xi}_{\mathrm{a}}}{\Delta \xi} \mathrm{~F}_{\mathrm{na}}-\frac{\hat{\mathrm{M}}_{\mathrm{n}} \frac{\mathrm{a}}{2}\left(\frac{2}{1+\mathrm{K}}\right)+\hat{\mathrm{M}}_{(\mathrm{n}-1) \frac{\mathrm{a}}{}}\left(\frac{2 \mathrm{~K}}{1+\mathrm{K}}\right)}{2 \Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}}\right]_{\mathrm{g}_{1, \mathrm{n}}}-\hat{\mathrm{C}}_{\mathrm{n}} \mathrm{~g}_{1, \mathrm{n}-1} \tag{40}\\
& \mathrm{D}_{\mathrm{n}}^{*}=-\mathrm{A}_{\mathrm{n}}^{*} \theta_{1, \mathrm{n}+1}+\left[\frac{\bar{\xi}_{\mathrm{a}}}{\Delta \xi} \mathrm{~F}_{\mathrm{na}}-\frac{\mathrm{M}_{\mathrm{n}}^{*} \frac{(}{2}\left(\frac{2}{1+\mathrm{K}}\right)+\mathrm{M}_{(\mathrm{n}-1) \frac{\mathrm{a}}{*}}^{*}\left(\frac{2 \mathrm{~K}}{1+\mathrm{K}}\right)}{2 \Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}}\right]_{\theta_{1, \mathrm{n}}}-\mathrm{C}_{\mathrm{n}}^{*} \theta_{1, \mathrm{n}-1}
\end{align*}
$$

$$
\begin{align*}
& +(\bar{\xi} \mathrm{Z})_{\mathrm{a}} \mathrm{~F}_{\mathrm{na}}\left(\theta_{\mathrm{na}}-1\right)-\frac{\left(\mathrm{u}_{\mathrm{e}}^{2}\right)_{\mathrm{a}}}{2 \mathrm{H}_{\mathrm{e}}^{2 \Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}}\left[\mathrm{M}_{\mathrm{n}}^{\prime} \frac{\mathrm{a}}{2}\left(\frac{2}{1+\mathrm{K}}\right)\left(\mathrm{F}_{1, \mathrm{n}+1}^{2}+\mathrm{F}_{2, \mathrm{n}+1}^{2}-\mathrm{F}_{1, \mathrm{n}}^{2}-\mathrm{F}_{2, \mathrm{n}}^{2}\right)\right.} \\
& \left.-\mathrm{M}_{(\mathrm{n}-1)}^{\prime} \frac{\mathrm{a}}{2}\left(\frac{2 \mathrm{~K}}{1+\mathrm{K}}\right)\left(\mathrm{F}_{1, \mathrm{n}}^{2}+\mathrm{F}_{2, \mathrm{n}}^{2}-\mathrm{F}_{1, \mathrm{n}-1}^{2}-\mathrm{F}_{2, \mathrm{n}-1}^{2}\right)\right] \\
& -\frac{\mathrm{w}_{\mathrm{e}}}{2} \mathrm{H}_{\mathrm{e}}^{2 \Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}}\left[\mathrm{M}_{\mathrm{n}}^{\prime}\left(\frac{2}{1+\mathrm{K}}\right)\left(\mathrm{g}_{1, \mathrm{n}+1}^{2}+\mathrm{g}_{2, \mathrm{n}+1}^{2}-\mathrm{g}_{1, \mathrm{n}}^{2}-\mathrm{g}_{2, \mathrm{n}}^{2}\right)\right. \\
& \left.-\mathrm{M}_{(\mathrm{n}-1)}^{\prime} \frac{\mathrm{a}}{2}\left(\frac{2 \mathrm{~K}}{1+\mathrm{K}}\right)\left(\mathrm{g}_{1, \mathrm{n}}^{2}+\mathrm{g}_{2, \mathrm{n}}^{2}-\mathrm{g}_{1, \mathrm{n}-1}^{2}-\mathrm{g}_{2, \mathrm{n}-1}^{2}\right)\right] \tag{41}
\end{align*}
$$

The formulas for g_{2} and θ_{2} are of the same form as equation (31) (since the wall boundary conditions for g and θ are the same as those for F) and are written as

$$
\begin{align*}
& \mathrm{g}_{2, \mathrm{n}}=\hat{\mathrm{G}}_{\mathrm{n}} \mathrm{~g}_{2, \mathrm{n}+1}+\hat{\mathrm{g}}_{\mathrm{n}} \tag{42}\\
& \theta_{2, \mathrm{n}}=\mathrm{G}_{\mathrm{n}}^{*} \theta_{2, \mathrm{n}+1}+\mathrm{g}_{\mathrm{n}}^{*} \tag{43}
\end{align*}
$$

where the recursion formulas for the \bar{G} and \bar{g} functions are of the same form as equation (32) with the appropriate superscript notation supplied. The number of equations in the systems given by equations (42) and (43) is again determined from

$$
\begin{align*}
& \left|\mathrm{g}_{\mathrm{e}}\left(1-\hat{\mathrm{G}}_{\mathrm{N}-1}\right)-\hat{\mathrm{g}}_{\mathrm{N}-1}\right| \leqq\left|\Delta \eta_{\mathrm{N}-1} \sigma_{\mathrm{e}}\right| \tag{44}\\
& \left|\theta_{\mathrm{e}}\left(1-\mathrm{G}_{\mathrm{N}-1}^{*}\right)-\mathrm{g}_{\mathrm{N}-1}^{*}\right| \leqq\left|\Delta \eta_{\mathrm{N}-1} \sigma_{\mathrm{e}}\right| \tag{45}
\end{align*}
$$

where, as before, g_{e}, σ_{e}, and θ_{e} are specified. An iteration procedure is thus used where equations (25), (36), (38), and (39) are solved, in that order. Equation (37) is used only on the first iteration. When the following convergence criteria are satisfied, the iterations are stopped and the entire procedure is repeated at the next ξ step. The convergence criteria are written as

$$
\begin{align*}
& \frac{F_{2,2, i+1}-F_{2,2, i}}{F_{2,2, i}} \leqq \sigma_{w} \tag{46}\\
& \frac{g_{2,2, i+1}-g_{2,2, i}}{g_{2,2, i}} \leqq \sigma_{w} \tag{47}\\
& \frac{\theta_{2,2, i+1}-\theta_{2,2, i}}{\theta_{2,2, i}} \leqq \sigma_{w} \tag{48}
\end{align*}
$$

where the index i denotes the number of the iteration cycle at a given ξ station.

Eddy Viscosity and Turbulent Prandtl Number Formulations

In this section, the models used for the turbulence correlation terms appearing in the conservation equations for the mean flow are described. The eddy-viscosity formulations are discussed first and then the turbulent Prandtl number expressions are discussed. For a more detailed discussion of these models, see reference 7.

Mixing-length relations and eddy-viscosity function for two-dimensional and axisymmetric flows.- The turbulent shear for two-dimensional flow is given by

$$
\begin{equation*}
\tau_{t}=\epsilon \frac{\partial u}{\partial y} \tag{49}
\end{equation*}
$$

A mixing length l may be defined by the relation (see refs. 2 and 11)

$$
\begin{equation*}
\tau_{\mathrm{t}}=\rho l^{2}\left|\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right| \frac{\partial \mathrm{u}}{\partial \mathrm{y}} \tag{50}
\end{equation*}
$$

From the calculations in reference 11 (based on experimental data), it was shown that l / δ tends to be a nearly universal function of y / δ and, in the outer portion of the boundary layer, l / δ is approximately constant and equal to a typical incompressible value of 0.09 (at least for adiabatic flows up to $\mathrm{M}_{\mathrm{e}}=5.0$). Hence, it is assumed herein that

$$
\begin{equation*}
\frac{l}{\delta}=\overline{\mathrm{f}}\left(\frac{\mathrm{y}}{\delta}\right) \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\mathrm{y}}{\delta}=\frac{\int_{0}^{\eta} \frac{\rho_{\mathrm{e}}}{\rho} \mathrm{~d} \eta}{\int_{0}^{\eta \delta} \frac{\rho_{\mathrm{e}}}{\rho} \mathrm{~d} \eta} \tag{52}
\end{equation*}
$$

The eddy viscosity is then given by the equation

$$
\begin{equation*}
\epsilon=\rho \delta^{2}\left(\frac{l}{\delta}\right)^{2}\left|\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right| \tag{53}
\end{equation*}
$$

Transformation to the η coordinate then gives

$$
\begin{equation*}
\frac{\epsilon}{\mu}=(2 \xi)^{\stackrel{\rightharpoonup}{\mathrm{n}}}\left(\frac{l}{\delta}\right)^{2}\left|\frac{\partial \mathrm{~F}}{\partial \eta}\right| \frac{\mu_{\mathrm{s}}}{\mu}\left(\frac{\rho}{\rho_{\mathrm{e}}}\right)^{2} \mathrm{r}^{-\mathrm{j}}\left(\int_{0}^{\eta_{\delta}} \frac{\rho_{\mathrm{e}}}{\rho} \mathrm{~d} \eta\right)^{2} \tag{54}
\end{equation*}
$$

where η_{δ} is the value of η when $F=0.995$. The appropriate finite-difference form for equation (54) is illustrated by evaluating the equation at point ($1, \mathrm{n}$) as follows:

$$
\begin{equation*}
\left(\frac{\epsilon}{\mu}\right)_{1, \mathrm{n}}=\left[\frac{(2 \xi)^{\overline{\mathrm{n}}}}{\mathrm{r}^{\mathrm{j}}}\right]_{1}\left[\left(\frac{l}{\delta}\right)^{2} \frac{\mu_{\mathrm{s}}}{\mu}\left(\frac{\rho}{\rho_{\mathrm{e}}}\right)^{2}\left(\int_{0}^{\eta_{\delta}} \frac{\rho_{\mathrm{e}}}{\rho} \mathrm{~d} \eta\right)^{2}\right]_{1, \mathrm{n}}\left|\frac{\mathrm{~F}_{1, \mathrm{n}+1}-\mathrm{F}_{1, \mathrm{n}-1}}{\Delta \eta_{\mathrm{n}-1}+\Delta \eta_{\mathrm{n}}}\right| \tag{55}
\end{equation*}
$$

Note that the quantity ϵ / β enters the viscosity functions, which are aiways evaiuated at either $n \frac{a}{2}$ or ($\left.n-1\right) \frac{\mathrm{a}}{2}$ as illustrated for \bar{M} by equations (26) to (29). These values of $\bar{M}_{\mathrm{n}}^{\mathrm{a}} \mathrm{a}$ or $\overline{\mathrm{M}}_{(\mathrm{n}-1) \frac{\mathrm{a}}{2}}$ are calculated from the arithmetical average of the four surrounding mesh points as illustrated by equation (30b). The $\overline{\mathrm{f}}$ function is either a tabulated function of y / δ or it may be computed from the following expressions:

$$
\left.\begin{array}{lr}
\overline{\mathrm{f}}=0.4 \frac{\mathrm{y}}{\delta} & \left(\frac{\mathrm{y}}{\delta} \leqq 0.1\right) \\
\overline{\mathbf{f}}=0.04+\frac{\frac{\mathrm{y}}{\delta}-0.1}{0.2}\left(\bar{f}_{\max }-0.04\right) & \left(0.1 \leqq \frac{\mathrm{y}}{\delta} \leqq 0.3\right) \tag{56}\\
\overline{\mathbf{f}}=\overline{\mathrm{f}}_{\max } & \left(\frac{\mathrm{y}}{\delta} \leqq 0.3\right)
\end{array}\right\}
$$

where

$$
\begin{equation*}
\overline{\mathrm{f}}_{\max }=\mathrm{A}+\mathrm{BH}_{\mathrm{i}}^{*}+\mathrm{CH}_{\mathrm{i}}^{* 2} \tag{56a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{H}_{\mathrm{i}}^{*} \equiv \frac{\int_{0}^{\delta}(1-F) d y}{\int_{0}^{\delta} F(1-F) d y} \tag{57}
\end{equation*}
$$

Recommended values of A, B, and C are given in reference 7.
In the wall region, the basic mixing-length function (eqs. (56)) is modified to account for the turbulent damping effect of the wall by multiplying $\overline{\mathrm{f}}$ by the Van Driest exponential damping function (see ref. 7). The final mixing length then becomes

$$
\begin{equation*}
\frac{l}{\delta}=\left[1-\exp \left(-\frac{y / L}{A_{d} / L}\right)\right] \overline{\mathbf{f}} \tag{58}
\end{equation*}
$$

where, if A_{d} is based on wall properties,

$$
\mathbf{A}_{\mathbf{d}}=\frac{\mathbf{A}_{\mathrm{b}} \mu_{\mathrm{w}}}{\rho_{\mathrm{w}} \sqrt{\tau_{\mathrm{w}} / \rho_{\mathrm{w}}}}
$$

or

$$
\begin{equation*}
\left(\frac{\mathrm{A}_{\mathrm{d}}}{\mathrm{~L}}\right)_{\mathrm{m}}=\frac{\mathrm{A}_{\mathrm{b}}(2 \xi)^{\overline{\mathrm{n}} / 2}}{\mathrm{R}_{\mathrm{S}}\left(\frac{\mu_{\mathrm{s}}}{\mu_{\mathrm{w}}}\right)^{1 / 2} \frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{e}}} \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{s}}} \frac{\mathrm{u}_{\mathrm{e}}}{\sqrt{2 \mathrm{H}_{\mathrm{e}}}} \mathrm{r}^{\mathrm{j}} / 2\left(\frac{\mathrm{~F}_{\mathrm{m}, 2}}{\Delta \eta_{1}}\right)^{1 / 2}} \tag{59}
\end{equation*}
$$

For $v_{w}=0, A_{b}=26$; and for $v_{w} \neq 0$ (blowing or suction), the A_{b} value is obtained from an input table of A_{b} values as a function of $\frac{\rho_{w} v_{w}}{\rho_{e^{u}} u_{e}} \frac{2}{C_{f}}$. (See ref. 7.) Computatations can also be carried out by using the program with $A_{d}=\frac{A_{b} \mu}{\rho \sqrt{\tau_{w} / \rho}}$; that is, A_{d} can be based on wall shear and local properties in the boundary layer.

Eddy-viscosity function for flows on infinite swept cylinders.- An eddy-viscosity formulation suitable for flows on infinite swept cylinders was derived in reference 8. This formulation is similar to that for two-dimensional and axisymmetric flows except that $\left|\frac{\partial u}{\partial y}\right|$ is replaced by $\sqrt{\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}}$ in equation (53). The eddy-viscosity relation evaluated at the point $1, \mathrm{n}$ then becomes

$$
\begin{align*}
\left(\frac{\epsilon}{\mu}\right)_{1, \mathrm{n}}= & {\left[\frac{(2 \xi)^{\bar{n}}}{\mathrm{r}^{\mathrm{j}}}\right]_{1}\left[\left(\frac{l}{\delta}\right)^{2} \frac{\mu_{\mathrm{s}}}{\mu}\left(\frac{\rho}{\rho_{\mathrm{e}}}\right)^{2}\left(\int_{0}^{\eta_{\delta}} \frac{\rho_{\mathrm{e}}}{\rho} \mathrm{~d} \eta\right)^{2}\right]_{1, \mathrm{n}}\left[\left(\frac{\mathrm{~F}_{1, \mathrm{n}+1}-\mathrm{F}_{1, \mathrm{n}-1}}{\Delta \eta_{\mathrm{n}-1}+\Delta \eta_{\mathrm{n}}}\right)^{2}\right.} \\
& \left.+\left(\frac{\mathrm{g}_{1, \mathrm{n}+1}-\mathrm{g}_{1, \mathrm{n}-1}}{\Delta \eta_{\mathrm{n}-1}+\Delta \eta_{\mathrm{n}}}\right)^{2}\left(\frac{\mathrm{w}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}}{\mathrm{u}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}}\right)^{2}\right]^{1 / 2} \tag{60}
\end{align*}
$$

This formulation for ϵ / μ is used in both the chordwise and spanwise momentum equations (eqs. (13) and (14)); that is, $\epsilon_{\mathrm{z}}=\epsilon$. The wall damping function (eq. (58)) is applied to the swept-cylinder problem by assuming that $\sqrt{\tau_{\mathrm{w}} / \rho_{\mathrm{w}}}$ is based on the total shear at the wall. This total or resultant shear is the vector sum of the shear in the chordwise and spanwise directions. Equation (59) then becomes

$$
\begin{equation*}
\left(\frac{A_{d}}{L}\right)_{m}=\frac{A_{b}(2 \xi)^{\bar{n} / 2}}{R_{S}\left(\frac{\mu_{s}}{\mu_{w}}\right)^{1 / 2} \frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{e}}} \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{s}}} \frac{\mathrm{u}_{\mathrm{e}}}{2 \mathrm{H}_{\mathrm{e}}} \mathrm{r}^{\mathrm{j} / 2}\left[\left(\frac{\mathrm{~F}_{\mathrm{m}, 2}}{\Delta \eta_{1}}\right)^{2}+\left(\frac{\mathrm{g}_{\mathrm{m}, 2}}{\Delta \eta_{1}}\right)^{2}\left(\frac{\mathrm{w}_{\mathrm{e}} \sqrt{2 \mathrm{H}_{\mathrm{e}}}}{u_{\mathrm{e}} \sqrt{2 \mathrm{H}_{\mathrm{e}}}}\right)^{2}\right]^{1 / 4}} \tag{61}
\end{equation*}
$$

Also, for $v_{w} \neq 0$, the A_{b} value is taken as a function of $\frac{\rho_{w} v_{w}}{\rho_{e}\left(u_{e}{ }^{2}+w_{e}{ }^{2}\right)^{1 / 2}} \frac{2}{C_{f, r e s}}$. (See ref. 8.)

Turbulent Prandtl number formulations.- The term involving eddy conductivity which appears in the conservation equation for total energy (eq. (4a)) has been modeled in the program by using two approaches. The first of these involves modeling the term

$$
\begin{equation*}
\overline{-(\rho v)^{\prime} H^{\prime}}=\kappa \frac{\partial H}{\partial y} \tag{62}
\end{equation*}
$$

which results in the definition of a "total turbulent Prandtl number"

$$
\begin{equation*}
N_{P r, T} \equiv \frac{\overline{(\rho v)^{\prime} u^{\prime}} \frac{\partial \overline{\mathrm{H}}}{\partial \mathrm{y}}}{\overline{(\rho v)^{\prime} \mathrm{H}^{\top}} \frac{\partial \stackrel{u}{u}}{\partial \mathrm{y}}}=\frac{\mathbf{c}_{\mathrm{p}} \epsilon}{\kappa} \tag{63}
\end{equation*}
$$

The mean total enthalpy equation using this approach is as previously given (eq. (4) or 4(a)).

The second approach involves modeling the term

$$
\overline{-(\rho v)^{\prime} h^{\prime}}=k^{*} \frac{\partial h}{\partial y}
$$

which results in the static turbulent Prandtl number

$$
\begin{equation*}
N_{P r, t} \equiv \frac{\overline{(\rho v)^{\prime} u^{\prime}} \frac{\partial \bar{h}}{\partial y}}{\overline{(\rho v)^{\prime} h^{\top}} \frac{\partial \bar{u}}{\partial y}}=\frac{c_{p} \epsilon}{\mathbf{k}^{*}} \tag{64}
\end{equation*}
$$

For this case the last term in the bracket of equation (4a) is modified to read

$$
-\frac{1-N_{P r}}{1-\zeta_{w}}\left(1+\frac{\epsilon}{\mu} \frac{N_{P r}}{N_{P r, t}} \frac{1-N_{P r, t}}{1-N_{P r}}\right)\left(\frac{u_{e}^{2}}{2 H_{e}} \frac{\partial F^{2}}{\partial y}+\frac{w_{e}^{2}}{2 H_{e}} \frac{\partial g^{2}}{\partial y}\right)
$$

The definition of M^{\prime} (eq. (10e)) then becomes

$$
\begin{equation*}
M^{\prime}=\frac{\varphi_{\mathbf{r}}}{N_{\operatorname{Pr}}} \frac{1-N_{\operatorname{Pr}}}{1-\zeta_{\mathrm{w}}}\left(1+\frac{\epsilon}{\mu} \frac{\mathrm{N}_{\mathrm{Pr}}}{\mathrm{~N}_{\operatorname{Pr}, \mathrm{t}}} \frac{1-\mathrm{N}_{\mathrm{Pr}, \mathrm{t}}}{1-\mathrm{N}_{\mathrm{Pr}}}\right) \tag{65}
\end{equation*}
$$

For swept-leading-edge flows, the $\mathrm{N}_{\operatorname{Pr}, \mathrm{t}}$ definition for turbulent Prandtl number must be used in order for the present system of equations to be conceptually correct. (See ref. 8.)

PROGRAM DESCRIPTION

The program is written in FORTRAN IV. A FORTRAN variable list is given first. Then, the various portions of the program, the main program and subroutines, each accompanied by flow charts, are given.

The main program controls the finite-difference solution of the boundary-layer equations, reads the input, calls the various subroutines, and writes the output. CALCM is called to compute the viscosity functions. During the iteration procedure, ABCDGS and COMPUTE are called successively for each variable to calculate the coefficients of the solution matrix and to compute new values for the variable, respectively. Library subroutines FTLUP and DISCOT are used for interpolation. A description of these subroutines is included in the appendix.

FORTRAN Variable List
$A B \quad$ value used from $A B T A B$

ABTAB table of A_{b} values in Van Driest damping function (see eq. (59))
ADL constant A_{d} in Van Driest damping function (A_{d} / L) (see eq. (58))

AP constant A in expression for $\bar{f}_{\max }$ (see eq. (56a))
BCG temporary storage used in computing G and g in ABCDGS
BP constant B in expression for $\bar{f}_{\max }$ (see eq. (56a))

CAPG coefficient in formula for dependent variables (see eq. (31), for example)
CAPMA2 dummy in ABCDGS for $\overline{\mathrm{M}}_{\mathrm{n}} \frac{\mathrm{a}}{2}, \hat{\mathrm{M}}_{\mathrm{n}} \frac{\mathrm{a}}{2}$, and $\mathrm{M}_{\mathrm{n}}^{\mathbf{n}}{ }_{2}^{*}$
CAPP1 $\quad P_{m=1} \quad$ (see eq. (10h))

CAPP2 $\quad P_{m=2}$ (see eq. (10h))
CAPRS reference Reynolds number, $\rho_{\mathrm{s}} \sqrt{2 \mathrm{H}_{\mathrm{e}}} \mathrm{L} / \mu_{\mathrm{S}}$
CAPU1 $\left[\frac{1}{u_{e} \sqrt{2 \mathrm{H}_{e}}} \frac{\mathrm{~d}\left(\mathrm{u}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}\right)}{\mathrm{d}(\mathrm{x} / \mathrm{L})}\right]_{\mathrm{m}=1}$ (see eq. (10g))
CAPU2 $\left[\frac{1}{u_{e} \sqrt{2 \mathrm{H}_{e}}} \frac{\mathrm{~d}\left(\mathrm{u}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}\right)}{\mathrm{d}(\mathrm{x} / \mathrm{L})}\right]_{\mathrm{m}=2}$ (see eq. 10 g$)$)
CAPZ1 $\left[\frac{1}{1-\zeta_{\mathrm{W}}} \frac{\mathrm{d} \zeta_{\mathrm{w}}}{\mathrm{d}(\mathrm{x} / \mathrm{L})}\right]_{\mathrm{m}=1}$ (see eq. (10i))
CAPZ2 $\left[\frac{1}{1-\zeta_{\mathrm{w}}} \frac{\mathrm{d} \zeta_{\mathrm{w}}}{\mathrm{d}(\mathrm{x} / \mathrm{L})}\right]_{\mathrm{m}=2}$ (see eq. (10i))

CFF wall-skin-friction coefficient for chordwise profile

CFG wall-skin-friction coefficient for spanwise profile

CKVAL check value used in COMPUTE for left side of equations (35), (44), and (45) CP constant C in expression for $\bar{f}_{\max }$ (see eq. (56a))

DELDEL2 temporary storage in equations for CAPA, CAPC, and CAPD in ABCDGS DELETA $\Delta \eta$

DELXI $\Delta \xi$

DELXIO initial $\Delta \xi$ step size
$\operatorname{DSDLF} \quad\left(\delta^{*} / L\right)_{F}$
DSDLG $\quad\left(\delta^{*} / L\right)_{g}$
DUDXTAB $\frac{d\left(u_{e} / \sqrt{2 \mathrm{H}_{e}}\right)}{d(\mathrm{x} / \mathrm{L})}$ table

DUEDX1 $\left[\frac{d\left(u_{e} / \sqrt{2 H_{e}}\right)}{d(x / L)}\right]_{m=1}$ (see eqs. (17b))
$\operatorname{DUEDX} 2 \quad\left[\frac{d\left(u_{e} / \sqrt{2 \mathrm{H}_{e}}\right)}{\mathrm{d}(\mathrm{x} / \mathrm{L})}\right]_{\mathrm{m}=2}$ (see eqs. (17b)).

DUM2 dummy in COMPUTE for F, g, and θ
DZDXTAB $\frac{d \zeta_{W}}{d(x / L)}$ table

DZWDX1 $\left[\frac{d \zeta_{W}}{d(x / L)}\right]_{m=1}$ (see eqs. (17b))
DZWDX2 $\left[\frac{\mathrm{d} \zeta_{\mathrm{w}}}{\mathrm{d}(\mathrm{x} / \mathrm{L})}\right]_{\mathrm{m}=2}$ (see eqs. (17b))

EMUSDMU	$\mu_{\mathbf{S}} / \mu$
EPSDMU	ϵ / μ
EPSLONE	accuracy criteria for $\partial(F, G, \theta) / \partial \eta$ at outer edge of profile $\left(\sigma_{e}\right)$ (see eqs. (35), (44), and (45))
EPSLONW	convergence criteria for iterations on F, g, and θ profiles, allowable percent change in wall slope between iterations (σ_{w}) (see eqs. (46) to (48))
ETA	η
ETATAB	input η table
$\left.\begin{array}{l} F A \\ F A 2 \end{array}\right\}$	average values of F (see fig. 2)
FBAR	l / δ (see eq. (51))
FBARMAX	maximum value of $\overline{\mathrm{f}}$
FBARTAB	$\overline{\mathrm{f}}$ values corresponding to YDDFB values
FCFTAB	$\frac{\rho_{\mathrm{w}} \mathrm{v}}{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}}} \frac{2}{\mathrm{C}_{\mathrm{f}}}$ values corresponding to ABTAB values
FCT1	$2 \mathrm{~K} /(1+\mathrm{K})$, used in ABCDGS to account for variable η step size
FCT2	$2 /(1+K)$, used in ABCDGS to account for variable η step size
FDCFD2	$\frac{\rho_{\mathrm{w}} \mathrm{v}_{\mathrm{w}}}{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}}} \frac{2}{\mathrm{C}_{\mathrm{f}}}$
FNCDEL1	intermediate variable used in calculation of $\mathrm{H}_{\mathrm{i}}^{*}$
FNCDEL2	intermediate variable used in calculation of $\mathrm{H}_{\mathbf{i}}^{*}$
FNCFRR1	intermediate variable used in calculation of $\left(\delta^{*} / L\right)_{\mathrm{F}}$

FNCFRR2	intermediate variable used in calculation of $\left(\delta^{*} / \mathrm{L}\right)_{\mathrm{F}}$
FNCGRR1	intermediate variable used in calculation of $\left(\delta^{*} / \mathrm{L}\right) \mathrm{g}$
FNCGRR2	intermediate variable used in calculation of ($\left.\delta^{*} / \mathrm{L}\right)_{\mathrm{g}}^{\mathrm{g}} \mathrm{g}$ g
FNCRER1	intermediate variable used in calculation of y / L
FNCRER2	intermediate variable used in calculation of y / L
FNCTHE 1	intermediate variable used in calculation of $\mathrm{H}_{\mathrm{i}}^{*}$
FNCTHE2	intermediate variable used in calculation of $\mathrm{H}_{\mathrm{i}}^{*}$
FPREV	$\mathrm{F}_{1,2}$
FRO	temperature recovery factor, used to compute Stanton number
FTAB	input u / u_{e} profile
FTEST	value of F at outer edge of boundary layer
FUNCF1	intermediate variable used in calculation of $\left(\theta^{*} / \mathrm{L}\right)_{\mathrm{F}}$
FUNCF2	intermediate variable used in calculation of $\left(\theta^{*} / \mathrm{L}\right)_{\mathrm{F}}$
FUNCG1	intermediate variable used in calculation of $\left(\theta^{*} / \mathrm{L}\right)_{\mathrm{g}}$
FUNCG2	intermediate variable used in calculation of $\left(\theta^{*} / \mathrm{L}\right)_{\mathrm{g}}$
FUNCX1	intermediate variable used in calculation of table of ξ values, XITAB

FUNCX2 intermediate variable used in calculation of table of ξ values, XITAB

FUNCY1 intermediate variable used in calculation of table of η values, ETATAB

FUNCY2	intermediate variable used in computation of table of η values, ETATAB
F1	$\mathrm{F}_{1, \mathrm{n}}$
F2	$\mathrm{F}_{2, \mathrm{n}}$
GEE2	input $\mathrm{g}_{1,2}$
GPREV	$\mathrm{g}_{1,2}$
GTAB	input $\mathrm{w} / \mathrm{w}_{\mathrm{e}}$ profile
GTEST	value of g at outer edge of boundary layer
G1	$\mathrm{g}_{1, \mathrm{n}}$
G2	$\mathrm{g}_{2, \mathrm{n}}$
HDCAPHE	$\mathrm{h} / \mathrm{He}_{\mathrm{e}}$
HEDCPHE	$\mathrm{h}_{\mathrm{e}} / \mathrm{He}_{e}$
HIS	$\mathrm{H}_{\mathrm{i}}^{*}=\left(\delta^{*} / \theta^{*}\right)_{\mathrm{i}} \quad$ (see eq. (57))
HISF	$\left(\mathrm{H}_{\mathrm{i}}^{*}\right)_{\mathrm{F}}$
HISG	$\left(\mathrm{H}_{\mathbf{i}}^{*}\right)_{\mathrm{g}}$
HRDCPHE	$\mathrm{h}_{\mathrm{e}} / \mathrm{H}_{\mathrm{e}}$
HSHE	$1-\frac{\mathrm{w}_{\mathrm{e}}^{2}}{2 \mathrm{H}_{\mathrm{e}}}$
I	a subscript
ICHD	indicates which D to compute in ABCDGS
ICOUNT	a count of number of times output is printed

IFBLU	$\begin{aligned} & =0 \text { for computing } \overline{\mathbf{f}} \\ & =1 \text { for table lookup of } \overline{\mathbf{f}} \end{aligned}$
INIT	$=0 \text { for } \Delta \xi_{\text {initial }}=\text { DELXIO }$
	$=1$ for small $\Delta \xi_{\text {initial }}$
ITERATE	indicates number -1 of iterations to get an acceptable set of values for all variables at a particular step
ITHETA	code for input temperature profile ITHETA = 1 if RHOTAB used ITHETA = 2 if ZETATAB used
IUSEEMU	$=0$ for laminar $(\epsilon / \mu=0)$ solution $=1$ for turbulent solution
IVAL	a variable used to denote outer boundary (number of equations (or $\Delta \eta$ steps) to be used at a particular step for a particular variable)
IVEG	$\begin{aligned} & =1 \text { for printout of } \quad \mathrm{V} \text { profile } \\ & =2 \text { for printout of } \epsilon / \mu \text { profile } \\ & =3 \text { for printout of } \mathrm{g} \text { profile } \end{aligned}$
IWLDMP	$=0$ for using wall properties in wall damping function $=1$ for using local properties in wall damping function
J	body shape index $j=0$ for two-dimsional flows $j=1$ for axisymmetric flows
JJ	a subscript used in COMPUTE
KF	a subscript used in COMPUTE
KMAX	$\mathrm{N}-10$ (Number of values computed across boundary layer - 10)
M	denotes order of interpolation for library subroutine FTLUP

MAX	indicates number of values to be printed
MPWEMU	$\begin{aligned} & =0 \text { for } \operatorname{PRTTAB}=N_{P r, T} \text { values } \\ & =1 \text { for } \operatorname{PRTTAB}=N_{\operatorname{Pr}, \mathrm{t}} \text { values } \end{aligned}$
M2	-2, indexing parameter in COMPUTE
NBACK	indexing parameter used in COMPUTE to denote edge
NF	subscript used in COMPUTE
NFBY	number of values in FBARTAB
NFCFAB	number of values in ABTAB
NMAXF	number of η steps to outer edge of F profile
NMAXG	number of η steps to outer edge of g profile
NMAXTH	number of η steps to outer edge of θ profile
NPRINT	counter used to determine when to print
NSTEPS	number of ξ steps between profile printouts
NUMDELE	NUMETA - 1
NUMETA	maximum number of steps in η-direction
NUMX	number of values in XL table
NUMY	number of values in YL table
NYP	number of values in PRTTAB
OL	reference length
PHIR	$(\rho \mu) /(\rho \mu) \mathbf{e}^{\text {e }}$ (see eq. (19))

molecular Prandtl number

PRT turbulent Prandtl number

PRTTAB turbulent Prandtl number table
QBAR output heat-transfer parameter, $\frac{\dot{\mathrm{q}}_{\mathrm{w}} \mathrm{L}}{\mu_{\mathrm{e}} \mathrm{H}_{\mathrm{e}}}$
$\mathbf{R} \quad \mathbf{r}$, body radius divided by \mathbf{L}

RA average value of \mathbf{r}

RCURJ a combination of terms used in computing $\bar{\theta} / \mathrm{L}$

RDXL $\quad R_{e, x} / L$
REDSF $\quad \frac{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \delta_{\mathrm{F}}^{*}}{\mu_{\mathrm{e}}}$
REDSG $\quad \frac{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \delta_{\mathrm{g}}^{*}}{\mu_{\mathrm{e}}}$
RERS $\quad \rho_{\mathrm{e}} / \rho_{\mathrm{S}}$
RERSA $\quad\left(\rho_{\mathrm{e}} / \rho_{\mathrm{s}}\right)_{\mathrm{a}}$
RERSTAB $\quad \rho_{\mathrm{e}} / \rho_{\mathrm{S}}$ table
RERSi
$\left(\rho_{\mathrm{e}} / \rho_{\mathrm{s}}\right)_{1}$
RERS2 $\quad\left(\rho_{\mathrm{e}} / \rho_{\mathrm{S}}\right)_{2}$

RETSF
$\frac{\rho_{e}{ }^{u} e^{\theta_{F}^{*}}}{\mu_{e}}$
RETSG $\quad \frac{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \theta_{\mathrm{g}}^{*}}{\mu_{\mathrm{e}}}$
$\operatorname{REX} \quad \frac{\rho \mathrm{e}^{u} \mathrm{e}^{\mathrm{x}}}{\mu_{\mathrm{e}}}$
RHOEROA $\quad\left(\rho_{\mathrm{e}} / \rho\right)_{\mathrm{a}}$

RHOERO1	$\left(\rho_{\mathrm{e}} / \rho\right)_{1, \mathrm{n}}$
RHOERO2	$\left(\rho_{\mathrm{e}} / \rho\right)_{2, \mathrm{n}}$
RHORHOE	ρ / ρ_{e}
RHOTAB	input ρ_{e} / ρ table
RMRRMSA	average value of $(\rho \mu)_{e} /(\rho \mu)_{S}$
RMUTAB	table of $(\rho \mu)_{\mathrm{e}} /(\rho \mu)_{\mathrm{S}}$
RRUUER	$\mathrm{R}_{\mathrm{S}} \frac{(\rho \mu)_{\mathrm{e}}}{(\rho \mu)_{\mathrm{S}}} \frac{\mathrm{u}_{\mathrm{e}}}{\sqrt{2 \mathrm{H}_{\mathrm{e}}}} \mathrm{r}^{2 \mathrm{j}}$
RTAB	r / l table
RURDRUS	$(\rho \mu)_{e} /(\rho \mu)_{\mathbf{S}}$
RUSDRUR	$(\rho \mu)_{S} /(\rho \mu){ }_{e}$
R1	r_{1}
R2	r_{2}
SHE	Sutherland's constant divided by H_{e}
SMDEL	summation used in computing $\mathrm{H}_{\mathbf{1}}^{*}$
SMLG	coefficient in formula for dependent variables (see eq. (31), for example)
SMRER	summation used in computing y / δ
SMTHE	summation used in computing $\mathrm{H}_{\mathbf{i}}^{*}$
ST	Stanton number
SUMF	summation used in computing $\left(\theta^{*} / \mathrm{L}\right)_{\mathrm{F}}$
SUMFETA	summation used in computing η

SUMFRR	summation used in computing $\left(\delta^{*} / \mathrm{L}\right)_{\mathrm{F}}$
SUMFXI	summation used in computing ξ
SUMG	summation used in computing $\left(\theta^{*} / \mathrm{L}\right)_{\mathrm{g}}$
SUMGRR	summation used in computing $\left(\delta^{*} / \mathrm{L}\right)_{\mathrm{g}}$
SUMRER	summation used in computing y / L and y / δ in CALCM
TAFDTAG	ratio of chordwise to spanwise shear at wall
TEST	value of F, g, or θ at edge of boundary layer
THETAA	average value of θ
THETAPR	$\theta_{1,2}$
THETA1	$\theta_{1, n}$
THETA2	$\theta_{2, n}$
THTEST	value of θ at edge of boundary layer
TIMES	temporary storage used in computingVa

TMDLDL2 temporary storage used in computing CAPB and CAPD in ABCDGS

TSDLF $\left(\theta^{*} / \mathrm{L}\right)_{\mathrm{F}}$

TSDLG
$\left(\theta^{*} / \mathrm{L}\right) \mathrm{g}$

TSTVAL test value used in COMPUTE for right side of equations (35), (44), and (45)
UEDSTAB $\quad u_{e} / \sqrt{2 H_{e}}$
UES2HEA $\quad\left(u_{e} / \sqrt{2 \mathrm{H}_{e}}\right)_{a}$
UES2HE1 $\quad\left(u_{e} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}\right)_{1}$

UES2HE2	$\left(\mathrm{u}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}\right)_{2}$
VA	average values of V
VADLDL2	temporary storage used in computing CAPA and CAPC in ABCDGS
VWA	average value of VWTAB
VWTAB	$\mathrm{v}_{\mathrm{w}} / \mathrm{u}_{\mathrm{e}}$ for axisymmetric or two-dimensional flow $\mathrm{v}_{\mathrm{w}} / \mathrm{w}_{\mathrm{e}}$ for swept-leading-edge flow
WEDS2HE	$\mathrm{w}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}$
XI	ξ
XIA	ξ_{a}
XIBARA	$(2 \xi)^{2 \stackrel{n}{\mathrm{n}}}$
XIBAR1	$(2 \xi)_{1}^{2 \bar{n}}$
XIBAR2	$(2 \xi)_{2}^{2 \overline{\mathrm{n}}}$
XIBCPPA	$(\bar{\xi} \mathrm{P})_{\mathrm{a}}$
XIBCPUA	$(\bar{\xi} \mathrm{U})_{\mathbf{a}}$
XIBCPZA	$(\bar{\xi} Z){ }_{\mathbf{a}}$
XIDELFA	temporary storage used in computing CAPB and CAPD in ABCDGS
XINB	$(2 \xi)^{\overline{\mathrm{n}}}$
XISTOP	value of ξ where solution is to be terminated
XITAB	table of ξ values where input is specified
XITEST	value of ξ where $\Delta \xi$ is increased by a factor of 10

XIO	value of ξ at input station
XI1	ξ_{1}
XI2	ξ_{2}
XK	$\Delta \eta_{\mathrm{n}} / \Delta \eta_{\mathrm{n}-1}$
XL	table of x / L values
XLPR	x / L values where profile printout is required
XMBAR	$\overline{\mathrm{M}}$
XMBARA	$\overline{\mathrm{M}}_{\mathbf{a}}$
XMBARA2	$\overline{\mathrm{M}}_{\mathrm{a} / 2}$
XMBAR1	$\overline{\mathrm{M}}_{1, \mathrm{n}}$
XMBAR2	$\overline{\mathrm{M}}_{2, \mathrm{n}} \quad$ (see eqs. (10b) and (10c))
XMCIRA2	$\hat{\mathbf{M}}_{\mathrm{a} / 2}$
XMCIRC	$\hat{\mathbf{M}}$
XMCIRCA	$\hat{\mathbf{M}}_{\mathrm{a}}$
XMCIRC1	$\hat{\mathbf{M}}_{1, \mathrm{n}}$
XMCIRC2	$\hat{\mathbf{M}}_{2, \mathrm{n}}$
XMME F	$\left(\mathrm{M} / \mathrm{M}_{\mathbf{e}}\right)_{\mathrm{F}}$
XMMEG	$\left(\mathrm{M} / \mathrm{M}_{\mathrm{e}}\right)_{\mathrm{g}}$

XMPRIM	$\mathrm{M}^{\mathbf{+}}$
XMPRIMA	$\mathrm{M}_{\mathrm{a}}^{\prime}$
XMPRIM1	$\mathrm{M}_{1, \mathrm{n}}^{\prime}$
XMPRIM2	$\mathrm{M}_{2, \mathrm{n}}^{\prime}$
XMPRMA2	$\left.M_{a / 2}^{\prime}\right\}^{\prime} \quad$ (see eqs. (10d) and (10e))
XMSTAR	M^{*}
XMSTARA	$\mathrm{M}_{\text {a }}{ }^{\text {a }}$
XMSTAR1	$\mathrm{M}_{1, \mathrm{n}}^{*}$
XMSTAR2	$\mathrm{M}_{2, \mathrm{n}}^{*}$
XMSTRA2	$M_{a / 2}^{*}$
XNBAR	$\overline{\mathrm{n}}$
XXL	x/L
$\left.\begin{array}{l}\mathrm{X0} \\ \mathrm{X} 1\end{array}\right\}$	initial value of x / L
YDD	$\mathrm{y} / 8$
YDDFB	y/ δ values corresponding to FBARTAB
YDDPRT	y/ δ values corresponding to PRTTAB
YDL	y/L
YL	table of y / L values for initial profiles
ZETA	ζ

ZETAE $\quad \zeta_{\mathrm{e}}=1.0$

ZETATAB input ζ profile

ZETAW1 $\quad \zeta_{\mathrm{w}_{1}}$
ZETAW2 $\quad \zeta_{W_{2}}$
ZETWTAB $\quad \zeta_{w}$ table
Description, Flow Charts, and Listings of the
Main Program and Subprograms
Main program D2630.- The main program controls the finite-difference solution of the boundary-layer equations. It reads the input, computes other initial conditions, sets up the grid used in the solution, calls all the subroutines, and writes the output. The flow-diagram of main program D2630 is as follows:

> Compute final densities $\left(\frac{\rho_{\mathrm{e}}}{\rho}\right)_{2, \mathrm{n}}$ and $\left(\frac{\rho}{\rho_{\mathrm{e}}}\right)_{2, \mathrm{n}}$, Mach numbers $\left[\left(\frac{\mathrm{M}}{\mathrm{M}_{\mathrm{e}}}\right)_{\mathrm{n}}\right]_{\mathrm{F}}$ and $\left[\left(\frac{\mathrm{M}}{\mathrm{M}_{\mathrm{e}}}\right)_{\mathrm{n}}\right]_{\mathrm{g}}$ (if $\left.\mathrm{g} \neq 0\right)$, and y and $\left(\frac{\mathrm{y}}{\mathrm{L}}\right)_{\mathrm{n}}$, at end of step

Set values of variables at beginning of next interval equal to values of variables at end of present interval

The program listing for Main program D2630 is as follows:

```
PROGRAM D2630(INPUT, OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
DIMENSION DELETA(350),FTAB(100),F1(350),FA(350),FA2(350),
1VA(350),GTAB(100),G1(350),G2(350),THETA1(350),THETAE(350),
2THETAA (350), RHOTAB(100),RHOERO1 (350), RHOEROA (350), ZETATAE(100:,
3ZETA(350), XMBAR1(350), XMCIRC:(350), XMSTAR1(350), XMPRIM1(350),
4PHIR(350), XMBARA2 (350), XMCIRAZ (350), XMSTRA2(350), XMPRMAR (350).
5CAPG(350),SMLG(350), FTATAB(100),DUUDXTAB(75),DZDXTAB(75).
6XITAB(75), XMBAR2(350), XMCIRC2(350), XMSTAR2(350), XMPRIM2(350),
7XMBARA (350), XMCIRCA (350), XMSTARA (350). XMPRIMA (350), SUMRER(350),
8F2(350), XLPR(30),VWTAB(75),RMUTAB(75),ABTAB(20),FCFTAE(20),
9XMMEG(350), XMMEF(350),ETA(350),UEDSTAB(75),ZETWTAR(75),XL(75).
1RTAB(75).RERSTAB(75),YL(100)
    COMMON/EPSDMU/EPSDMU(350)
    COMMON/TABLE 1/RHOERO?(350)
    COMMON/TABLE2/YDL (350),RHORHOE (350)
    COMMON/THREE/NUMETA,NMAXF
    COMMON/FEBI2/VWA
    COMMON/FEB11/PRTTAB(20),YDDPRT (20),NYP
    COMMON/HDCAPHE/HDCAPHE (350), GEE2
    COMMON/MUUSE/IUSEEMU,MPWEMU
    COMMON/FBAR/FBARTAB(20),IFBLU,YDDFB(20),NFBY
    COMMON/IWLDMP/I WLDMP
    NAMELIST/NAMI/NUMETA,NMAXF,NMAXG,DELETA,XK,XIO.DELXIO,XITEST,
1\timesISTOP,FTAB,ETATAB,VWTAB,EPSLONE,EPSLONW, GTAB,UEDSTAB.
2 WEDS2HE,PR,ZETWTAE, XNBAR,RERSTAB,CAPRS,RTAB,J,RHOTAB,
3SHE,ZETATAB,ITHETA,HSHE,XL,NUMX,YL,NUMY,
4\timesO,OL,DUDXTAB,DZDXTAR,FRO,NSTEPS,
5AP,BP, CP,ABTAB,FCFTAR,NFCFAB,PRTTAB, YDDPRT,NYP,
6 XLPR,IVEG,INIT,IUSEEMU,MPWEMU,
7FBARTAB,IFBLU,YDDFB,NFBY,IWLDMP
    ZETATAB(2)=0.0
    RHOTAB(2)=0.0
    ETATAB(2)=0.0
    XLPR(2)=0.0
    xIO=0.0
    NPRINT=1
    I COUNT = 1
    READ(5,NAM1)
```

WRITE(G•NAMI)

OPTION FOR INITIAL DFLTA XI
IF (INIT.EQ.O)DELXI=DELXIO
IF (INIT•EQ.1) DELXI $=\times 10 * 1 \cdot F-5$
GEEZ=GTAB(2)
TRANSFORMXTOXI
HRDCPHE = 1. - UEDSTAB (1)**2-WEDS2HE**2
RMUTAB (1) = SQRT (HRDCPHE/HSHE)*(HSHE+SHE)/(HRDCPHE+SHE)
1*RERSTAB(1)*HRDCPHE
2/HSHE
FUNC $\times 1=$ RMUTAB(1)*UEDSTAB(1)*RTAB(1)**(2*J)
$x_{1}=x \cap$
DO 2? $1=1$. NUMX
IF (I.EQ.1)GO TO 15
HRDCPHE = 1.-UEDSTAB(1)**2-WEDS2HE**?
RMUTAB (I) = SQRT (HRDCPHE/HSHE)*(HSHF+SHE)/(HRDCPHE+SHE)
1*RFRSTAB(1)*HRDCPHF.
2. HSHE

FUNCX2=RMUTAB(I)*UEDSTAB(1)*RTAB(1)**(2*J)
SUMFXI = SUMFXI+(FUNCX2+FUNCX1)/2•*(XL(I)-XL(I-1))
FUNC $\times 1=F$ UNCX?
GO TO 95
15 SUMFXI=0.
95 RRUUER=CAPRS*RMUTAB(1)*UEDSTAB(I)*RTAB(1)**(2*J)
IF (XIO.EQ.O.) GO TO 25
GO TO 31
$25 \times 10=$ RRUUFR* $\times 1$
31×1 TAR (1) $=\times 10+$ CAPRS*SUMFXI
DUDXTAB (1)= OUDXTAB(1)/RRUUER
$D Z D \times T A B(1)=D Z D \times T A B: 1) / R R U U E R$
??. CONTINUE
$\times 11=\times 10$

IF (ETATAB(2).NE•O.) GO TO 26
IF (ZETATAB(Z).EQ.O.) OO TO 32
DO $2021=1$, NUMY

2n2 CONTINUF
no $33 \quad 1=1$. NUMY
RHOTAB(1)=((1.-ZETWTAB(1))*THETA1(1)+ZETWTAB(1)-UEDSTAB(1)**2
$1 * F T A B(1) * * 2-W E D S 2 H E \quad * * 2 * G T A B(I) * * 2) /(1 .-\operatorname{UEDSTAB}(1) * * 2-W E D S 2 H E$
2**?)
33 CONTINUE
32 CONTINUE
DO $34 \quad 1=1$, NUMY
RHORHOE (I) = 1•/RHOTAB(I)
34 CONTINUE
FUNCY1 = RHORHOF (1)*RFRSTAB(1)
SUMFFTA $=0.0$
$\operatorname{ETATAB}(1)=0.0$
DO $27 \mathrm{I}=2$. NUMY
FUNCY2=RHORHOE (1) \#RERSTAB(1)
SUMFETA=SUMFETA+(FUNCY2+FUNCY1)/2•*(YL(1)-YL(I-1))

```
```

 FUNCY1=FUNCY2
    ```
```

 FUNCY1=FUNCY2
 ETATAB(1)=CAPRS*UEDSTAB(1)*RTAB(1)**J/(2*XIO)**XNBAR *SUMFETA
 ETATAB(1)=CAPRS*UEDSTAB(1)*RTAB(1)**J/(2*XIO)**XNBAR *SUMFETA
 27 CONTINUE
 27 CONTINUE
 26 cONTINUE
    ```
    26 cONTINUE
```

```
    CONSTANTS
```

 CONSTANTS
 ZFTAF=1.
 ZFTAF=1.
 FTEST=.99999
 FTEST=.99999
 GTEST}=.9999
 GTEST}=.9999
 THTEGT=.99999
 THTEGT=.99999
 ETA(1)=0.
 ETA(1)=0.
 SUMRER(1)=0.
 SUMRER(1)=0.
 COMPUTE DELTA ETAS
 COMPUTE DELTA ETAS
 F1(1)=FTAB(1)
 F1(1)=FTAB(1)
 G1(1)=GTAB(1)
 G1(1)=GTAB(1)
 IF(ZETATAB(2),NE.O.) ZETA(1)=2ETATAB(1)
 IF(ZETATAB(2),NE.O.) ZETA(1)=2ETATAB(1)
 IF(RHOTAB(2).NE.O.)RHOERO1(1)=RHOTAB(1)
 IF(RHOTAB(2).NE.O.)RHOERO1(1)=RHOTAB(1)
 M=?
 M=?
 DO 10 I=2.NUMETA
 DO 10 I=2.NUMETA
 DELETA(I)=XK**(I-1)*חELETA(1)
 DELETA(I)=XK**(I-1)*חELETA(1)
 COMPUTE ETASS
 COMPUTE ETASS
 I NTERPOLATFFTOGETG(ETA)S
 I NTERPOLATFFTOGETG(ETA)S
 ETA(I)=ETA(I-1)+DELETA(I-1)
 ETA(I)=ETA(I-1)+DELETA(I-1)
 IF(F1(I-1).GT..9)M=1
 IF(F1(I-1).GT..9)M=1
 CALL FTLUP(ETA(I),F1(I),M,NUMY,ETATAB,FTAB)
 CALL FTLUP(ETA(I),F1(I),M,NUMY,ETATAB,FTAB)
 M=?
 M=?
 IF(GTAB(2).EQ.O.)GO TO 17.
 IF(GTAB(2).EQ.O.)GO TO 17.
 IF(G1(I-1).GT..9)M=1
 IF(G1(I-1).GT..9)M=1
 CALL FTLUP(ETA(I),GI(I),M,NUMY,ETATAB,GTAB)
 CALL FTLUP(ETA(I),GI(I),M,NUMY,ETATAB,GTAB)
 M=2
 M=2
 GO TO 16
 GO TO 16
 17 G1(I)=0.0
17 G1(I)=0.0
16 IF(ZETATAB(2).EQ.O.)GO TO 18
16 IF(ZETATAB(2).EQ.O.)GO TO 18
IF(ZETA(I-1).GT..9)M=1
IF(ZETA(I-1).GT..9)M=1
CALL FTLUP(ETA(I),ZETA(I),M,NUMY,ETATAB,ZETATAB)
CALL FTLUP(ETA(I),ZETA(I),M,NUMY,ETATAB,ZETATAB)
M=?
M=?
GO TO 19
GO TO 19
18 IF(ABS(RHOERO1(I-1)-1\bullet).GE...i)M=1
18 IF(ABS(RHOERO1(I-1)-1\bullet).GE...i)M=1
CALL FTLUP(ETA(I),RHOERO1(I),M,NUMY,ETATAB,RHOTAB)
CALL FTLUP(ETA(I),RHOERO1(I),M,NUMY,ETATAB,RHOTAB)
19 CONT INUE
19 CONT INUE
10 CONTINUE
10 CONTINUE
INITIIALFF(XIII,S
INITIIALFF(XIII,S
UES2HE1 =UEDSTAB(1)
UES2HE1 =UEDSTAB(1)
ZETAW1=ZETWTAB(1)
ZETAW1=ZETWTAB(1)
RERS 1=RERSTAB(1)
RERS 1=RERSTAB(1)
R1=RTAB(1)
R1=RTAB(1)
DUEDX1=DUDXTAB(1)
DUEDX1=DUDXTAB(1)
DZWDX1=DZDXTAR(1)
DZWDX1=DZDXTAR(1)
CAPU1 = DUEDX1/UES2HE1
CAPU1 = DUEDX1/UES2HE1
CAPP1 =-CAPUI
CAPP1 =-CAPUI
CAPZ, =DZWDX1/(1•-ZETAW1)

```
    CAPZ, =DZWDX1/(1•-ZETAW1)
```

 IF (ITHETA.EQ. 2)GO TO 11
 THETA1(1)=0.0
 DO ? ? O \(1=2\), NUMETA
 THETA1 (I) = (RHOFRO1 (I)* (1•-UES2HE1**2-WEDS2HE**2)-ZETAW + +UES 2 HE 1
 1**2*F1(I)**2+WEDS2HF**2*G1(1)**2)/(1•-ZFTAW1)
 2On CONTINUE
 GO TO 12
 11 กO 201 \(1=1\), NUMETA
 THFTA1(1)=(ZETA(I)-ZFTAW1)/(1.-ZETAW1)
 201 CONTINUE
 12 CONTINUE
 MUZETAS ARFGIVENQINITIALRRHOEROIS
 MUSTBE BEALCULATED
 IF(ZETATAB(2).EQ.O.)GO TO 28
 DO 29 I = 1. NUMETA
 RHOERO1 (I) = ((1.-ZETAW1)*THETA1 (I) +ZETAW1-UES2HE1**2*F1 (1)**2
 1-WEDS2HE**2*G1(1)**2)/(1•-UFS2HE1**2-WFDS2HF**2)
 29 CONTINUE
 PR CONTINUE
 DO \(21 \quad 1=1\), NUMETA
 RHORHOE (1) = 1./RHOFRO 1 (1)
 21 RHOERO2 (1)=RHOERO1 (I)
 COMPUTEINITI ALVVS
 XIAAR1 \(=(2 . * * 10) * *(2 . *\) XNBAR)
 \(\operatorname{VA}(1)=(2 * \times 11) * * \times N R A R / R 1 * * J * R H O R H O F(1) * R F R S 1 * V W T A R(1) / R M U T A B(1)\)
 IF(GEE2•NE.O.)VA(1)=VA(1)*WFDS2HE/UES2HE1
 DO \(20 \mathrm{I}=\) 乞., NUMETA
 \(\operatorname{VA}(1)=V A(1-1)-\operatorname{DELETA}(1-1) * \times \operatorname{IBAR} I *(F 1(I)+F 1(I-1)) * \times N B A R /(2 . * \times I 0)\)
 20 CONT INUE
 YOL (1)=0.0
 FNCRER1 = RHOERO2 (1)
 DO \(42 \mathrm{l}=\) a. NUMFTA
 FNCRFR2 = FHOFROZ (I)
 \(\operatorname{SUMRER}(1)=\operatorname{SUMRER}(1-1)+(F N C R E R 2+F N C R E R 1) / 2 \cdot * D E L E T A(I-1)\)
 FNCRER1 \(=\) FNCRER2

4? CONTINUF
CALCULATEINITJALMS
VWA = VWTAE(1)
IF (GEE2.NE. O.) VWA =VWA*WEDS2HE/UES2HE1
DO $44 \quad \mathrm{I}=1$, NUMETA
HDCAPHE (I) $=(1 .-Z E T A W 1) * T H E T A 1(I)+Z E T A W 1-U E S 2 H E 1 * * 2 * F 1(1) * * 2$
1-WEDS2HE**2*G1(1)**2
44 CONTINUF
call calcm zetawi. Ueszhel.fi.wedszhe. zetae.
1 SHE,DR, XMBAR1.XMCIRC1, XMSTAR1, XMPRIM1, PHIR,
2HSHE. RERS $1, \times 11, X N B A R, R 1 \cdot J$.
3DFLFTA,RURDRUS. CAPRS,SUMRER,AP,BP,CP, ABTAB,FCFTAB,NFCFAB,
4NMAXG,G1)
4N CONTINUE

```
c
C REGINNEWINTERVAL
C
    IF(XI1.GE.XIO+3O.*DELXI.AND.INIT.EQ.1)GO TO 46
    GO TO 48
    4 6 \text { DELXI=DELXIO}
    INIT=0
48 CONTINUE
    IF(XI1.LT.XITEST)GO TO 35
    DELXI=DELXI*10.
    XITEST=XITEST*1O.
35 <12=XI1+DELXI
    IF(ICOUNT•EQ.1) XI2= XII
    XIA = (XI 1+XI2)/2.
    ITERATE=1
    DO 30 I=1,NUMETA
    F2(I)=F1(I)
    FA(I)=F1(I)
    G2(I)=G1(1)
    THETAZ(1)=THETA1(1)
    THETAA(1)=THETA1(1)
    XMBAR2 (I)=XMBAR1(1)
30 CONTINUE
52. CONTINUE
    INTERPOLATFFORF1XIZ,S
    CALL FTLUP(XIA,RA,1;NUMX,XITAB,RTAB)
    CALL FTLUP(XIA,RERSA,1,NUMX, 决TAB,RERSTAB)
    CALL FTLUP(XIA,RMRRMGA,1,NUMX,XITAB,RMUTAB)
    CALL FTLUP(XIA,VWA,I,NUMX,XITAB,VWTAB)
    CALL FTLUP(XI2,UES2HF2,1.NUMX.XITAR,UEDSTAB)
    CALL FTLUP(XI2,ZETAWZ,1,NUMX,XITAB,ZETWTAB)
    CALL FTLUP(XI2.RERS2.1,NUMX,XITAB,RERSTAB)
    CALL FTLUP(XI2.R2.1,NUMX•XITAB,RTAB)
    CALL FTLUP(XI2,DUEDX?,1,NUMX,XITAB,DUDXTAB)
    CALL FTLUP(XI2,DZWDX2,1,NUMX,XITAB,DZDXTAB)
    UES2HEA = (UES2HE1 +UES2HE2)/2.
    CAPUZ=DUEDX2/UES2HE2
    CAPP2=-CAPUZ
    CAPZ2=DZWDX2/(1.-ZETAWZ)
    XIBAR2 = (2.*XI2)**(2.*XNBAR)
    XIBARA = (XIBAR1 + XIBARح )/2.
    XIBCPUA = (XIBAR1*CAPU1 + XIBAR2*CAPUZ)/2.
    xIBCPPA = ( XIRAR 1*CAPP 1 + XIBAR2*CAPP2 )/2.
    XIBCPZA = (XIBAR1*CAPZ1+XIBAR2*CAPZ2)/2.
    IF(ICOUNT.EQ.1)GO TO 110
    IF(GEE2.NE.O.)VWA=VWA*WEDS2HE/UES2HEA
    I TER A TE WIT H S A ME XI 2
        37 DO 36 I =1,NUMETA
        RHOERO2(1)=((1.-ZETAW2)*THETA2(I)+ZETAW2-UES2HE2**2*F2(1)**2
    1-WEDS2HE**2*G2(1)**2)/(1. -UES2HE2**2-WEDS2HE**2)
    RHOEROA(I)=(RHOERO1(I)+RHOERO2(I))/2.
    RHORHOE (I)=1•/RHOEROつ(I)
36 CONTINUE
    FNCRER1 =RHOERO2(1)
    DO 38 I =2,NUMETA
```

```
        FNCRER2 = RHOEROP (I)
        SUMRER (1)=SUMRER (I - 1) +(FNCRER2+FNCRER1 //2.*DELETA(I - 1)
        FNCRER1=FNCRER2
        YDL (1)=(2.**I2)**XNRAR * 1./RERS2*SUMRER(I)/(CAPRS*R2**J*UES2HE2)
        38 CONTINUE
    HDCAPHE (1)=(1.-ZETAW?)*THETAZ(1)+ZETAW2-UES2HE2**2*F2(I)**2
    1-WEDS2HE**2*G2(I)**2
39 CONTINUE
    CALL CALCM(ZETAWZ.UESZHE2,FZ,WEDS2HE,ZETAE,
    1 SHE,PR, XMBAR2,XMCIRC2.XMSTAR2,XMPRIM2.PHIR.
    2HSHE, RERS2,XI2.XNBAR ,R2.J,
    3DELETA,RURDRUS, CAPRS,SUMRER,AP,BP,CP, ABTAB,FCFTAB,NFCFAB,
    4NMAXG,G2)
    DO 54 I =1, NUMETA
    XMBARA(I)=(XMBAR1(I)+XMBAR2(I))/2.
    IF(GEE2.NE.O.)XMCIRCA(I)=(XMCIRCI(I)+XMCIRCZ(I))/2.
    XMSTARA(I)=(XMSTARI(I)+XMSTAR2(I))/2.
    XMPRIMA(I)=(XMPRIM1(i)+XMPRIM2(I))/2.
5 4 ~ C O N T I N U E
    NUMDFLE =NUMETA-1
    DO 50 I =1, NUMDELE
    XMBARAZ(1)=(XMBARA(I +1)+XMBARA(I))/2.
    IF(GEE2.NE.O.) XMCIRAZ(I)=(XMCIRCA(I+1)+XMCIRCA(I))/2.
    XMSTRAZ(I)=(XMSTARA( (+1)+XMSTARA(I))/2.
    XMPRMA2(I)=(XMPRIMA(I+1)+XMPRIMA(1))/2.
50 CONTINUE
UPDATEFAS
DO \(70 \quad i=2\). NUMETA
\(F A(I)=\left(F_{1}(1)+F 2(I)\right) / つ\).
70 CONTINUE
חO \(73 \mathrm{I}=1\). NUMOFLE
FAZ (I) = (FA (I+1) +FA(I))/2.
73 CONTINUE
TIMES \(=\times\) NBAR \(/ \times I A\)
VA \((1)=(2 * \times I A) * * X N B A R / R A * * J / R H O E R O A(1) * R E R S A * V W A / R M R R M S A\)
DO \(74 \mathrm{I}=2\).NUMETA
\(\operatorname{VA}(1)=\operatorname{VA}(1-1)-\operatorname{DELETA}(\mathrm{I}-1) * \times \mathrm{IBARA} /(2 \cdot * D E L \times I) *(F 2(1)+F 2(1-1)-F 1(1)\)
1-F1(I-1) )-DELETA (I-1)*×IBARA*FAC(I-1)*TIMES
74 CONTINUE
CALCULATEGS
IF(GTAB(2)•EQ.O.)GO TO 75
\(1 \mathrm{CHD}=2\)
```

GPREV=G2(2)
CALL ABCDGS (NUMDELE, DELETA, XIBARA,DELXI,FA,VA,XMCIRAZ,ICHD,F1, $1 \times I B C P \cup A, X I B C P P A, R H O E R O A, G 1, T H E T A 1, \times I B C P Z A, T H E T A A, U E S Z H E A, X M P R M A 2$, 2F2,WEDS2HE,G2.CAPG,SMLG,XK)
CALL COMPUTE (NMAXG,GTEST•NUMDELE, DELETA,EPSLONE,CAPG•SMLG,G2,)

[^1]75 CONTINUE
$1 \mathrm{CHD}=3$
THETAPR=THETAZ (2)
CALL ABCDGS (NUMDELE. NELETA. XIBARA.DELXI,FA.VA.XMSTRAZ, ICHD.FI.
$1 \times I B C P U A, X I B C \subset P P A, R H O E R O A, G 1, T H E T A 1, X I B C P Z A, T H E T A A, ~ U E S Z H E A, ~ X M P R M A Z$, 2F2,WFDS 2HE,G2.CAPG,SMLG,XK)
IF (XI1.EQ. XIO.AND.ITFRATE.EQ. 1) NMAXTH=1.1*NMAXF
CALL COMPUTE (NMAXTH,THTEST,NUMDELE, DELETA,EPSLONE,CAPG,SMLG,
ITHETAZ ,

```
UPDATETHETAS
```

CONVERGENCFCRITERIA

IF (ARS ($(F 2(2)$-FPREV)/FPREV).LE•EPSLONW)GO TO 90
GO TO 37
90 IF(G1(2).EQ.O.) GO TO 100
IF(ABS ((G2 (2)-GPREV)/GPREV).LE•EPSLONW)GO TO 100
GO TO 37
100 IF (ABS ((THETA2 (2)-THETAPR)/THETAPR).LE•EPSLONW)GO TO 110
GO TO 37
110 CONTINUE
OUTPUT
CALCULATE THETAS

- IFITERATE日Q. 3 go

C OMPUTE RHOERHO S

DO $80 \mathrm{I}=1$, NUMETA
RHOEROZ (I) = ($1 .-$ ZETAW2)*THETAZ (I) +ZETAW2-UFS2HE2**2*F2 (1)**2-
1 WEDS $2 H E * * 2 * G 2(1) * * 2) /(1 .-U F S 2 H E 2 * * 2-$ WEDS2HE**2)
RHORHOE (I) = 1 •/RHOFROP (1)
$\operatorname{IF}(G E E 2$. NE. O.) $\times \operatorname{MMEG}(1)=G 2(I) \because S Q R T(R H O R H O F(I))$
XMMEF(I)=F2(I)*SQRT (RHORHOE (I))
8O CONTINUE
FNCRER1 = RHOERO2 (i)
DO $102 \mathrm{I}=2$, NUMETA
FNCRER2 = RHOERO2 (I)
$\operatorname{SUMRER}(1)=\operatorname{SUMRER}(1-1)+(F \operatorname{NCRFR} 2+F \operatorname{NCRER} 1) / 2 \cdot * \operatorname{DELETA}(\mathrm{I}-1)$
FNCRER $1=$ FNCRER2
YOL (1) $=(2 * * \times 12) * * \times N A A R * 1 \cdot / R E R S 2 * S U M R E R(1) /(C A P R S * R 2 * * J * U E S 2 H E 2)$
102 CONTINUE
CALL FTLUP (XI2, XXL, $1, N U M X, \times 1 T A B, X L)$
IF (XLPR (2)•EQ.O.) GO TO 116
IF (XXL •GE•XLPR (NPRINT)) GO TO 103

```
        IF(ICOUNT.EQ.1)GO TO 103
    GO TO 115
    116 IF(NPRINT.EQ.NSTEPS)GO TO 101
        NPRINT = NPRINT+1
        IF(ICOUNT.FQ.1)GO TO 103
        GO TO 115
    101 NPRINT=1
    103 CONTINUE
        DO 91 I=1,NUMETA
        ZETA(I)=THETA2(I)*(1.-ZETAW2)+ZETAW2
        91 CONTINUE
        WRITE(6,111)X12, XXL
    111 FORMAT(1HO,3HXI=,E2O.8.4X,4HX/L=,E2O.8)
        MAX=NMAXF+10
        GO TO (117.118,119)IVEG
    117 WRITE(6.112)
    112 FORMAT ( 1HO,7X,3HETA. 11X,3HY/L, 12X, 1HF, 13X,1HV,11X,5HTHETA.9X.
        14HZETA, 8X,8HRHO/RHOE, 8X,5HM/MEF)
        DO 113 I= 1.MAX
        WRITE(6.114)I!ETA(I),YDL(I),F゙2(I),VA(I),THETA2(1),ZETA(I).
        1RHORHOE(I),XMMEF(I)
    113 CONTINUE
    GO TO 115
    114 FORMAT(I4,9E14.4)
    118 WRITE(6.141)
    141 FORMAT(1HO,7X, 3HETA, 11X, 3HY/L, 12X, 1HF, 11 X,6HEPSDMU,8X,5HTHETA,
    19X,4HZETA.8X,8HRHO/RHOE, 8X,5HM/MEF)
        DO 142 I=1 , MAX
        WRITE(6.114)I,ETA(I),YDL (I).F2(I),EPSDMU(I),THETAZ(I).ZETA(I),
        1RHORHOE(I).XMMEF(I)
    14? CONTINUE
        GO TO 115
    119 WRITE(6.143)
    143 FORMAT(1HO,7X,3HETA,11X,3HY/L,12X,1HF,13X,1HG,11X,5HTHETA,9X.
        14HZETA, 8X,8HRHO/RHOF, 8X,5HXMBAR, 11 X,5HXMMEF)
        OO 144 I= 1,MAX
        WRITE(G*114)I,ETA(I),YDL. (I),F2(I),G2(I),THETAZ(I),ZETA(I).
        1RHORHOE (I), XMBAR2 (I), XMMEF (I)
    144 CONTINUE
    115 CONTINUE
C
C
C
    UPDA TEEVALUES
    *IRAR2 = (2.**12)**(2.**NBAR)
    DO 120 I=1.NUMETA
    F1(I)=F2(I)
    G1(I)=G2(I)
    THETA1(1)=THETAZ(1)
    RHOERO1(1)=RHOERO2(I)
120 CONTINUE
    UES2HE1 =UES2HE2.
    DO 10G I=1 NUMETA
    HDCAPHE(I)=(1.-ZETAW2)*THETA1(1)+ZETAW2-UESZHE1**2*F1(I)**2
    1-WFDS2HE**2*G1(1)**2
106 CONTINUE
    CALL CALCM(ZETAWZ. UFS2HE1•F1,WEDSZHF, ZETAE:
    1 SHE,PR, XMBARI,XMCIRC1,XMSTARI,XMPRIMI,PHIR,
    2HSHE, RERS2.XI2.XNAAR ,R2.J.
    30ELETA,RURDRUS. CAPRS,SUMRER,AP,BP,CP, ABTAB,FCFTAB,NFCFAS,
```

```
    4NMAXG.G1)
    IF(ICOUNT.EQ.1)GO TO 104
    IF(XLPR(2)-EQ.O.)GO TO 145
    IF(XXL •GE.XLPR(NPRINT))GO TO 105
    GO TO 123
105 NPRINT=NPRINT+1
    GO TO 104
145 IF(NPRINT.NE.1)GO TO 123
104 CONTINUE
    XINB=(2.* * 12)** \NBAR
    CFF=PHIR(1)/RERS2*2•*R2**J/XINB*(F2(2)-F2(1))/DELETA(1)*RURDRUS
    IF(GEE2.NE.O.)CFG=PHIR(1)/RERS2*2.*R2**J/XINB*(G2(2)-G2(1))/DELETA
    1(1)*UES2HE1/WEDS2HE*RURDRUS
    IF(GEE2.NE.0.)TAFDTAG=CFF/CFG*(UES2HE1/WEDS2HE)**2
    SUMF=0.0
    FUNCF1=F2(1)*(1.-F2(1))
    DO 9? 1=2.NMAXF
    FUNCF2=F2(1)*(1.-F2(1))
    SUMF=SUMF+(FUNCF2+FUNCF1)/2.*(ETA(1)-ETA(1-1))
    FUNCF1=FUNCF?
9 2 ~ C O N T I N U E ~
    RCURJ=RERS2*CAPRS*UFG2HE2*R2**J
    TSDLF=XINB/RCURJ*SUMF
    IF(GEE2.EQ.O.)GO TO 150
    SUMG=0.0
    FUNCG1 = G2(1)*(1.-G2(1))
    DO 94 I=2,NMAXG
    FUNCG2=G2(I)*(1.-G2(1))
    SUMG=SUMG+(FUNCG2+FUNCG1)/2.*(ETA(I)-ETA(I-1))
    FUNCG1=FUNCG2
9 4 ~ C O N T I N U E ~
    TSNLG=XINB/RCURJ*SUMG
150 CONTINUE
    SMDEL=0.0
    SMTHE=0.0
    FNCDEL1=1.-F2(1)
    FNCTHE1=F2(1)*(1,-F2(1))
    DO 5G 1=2.NMAXF
    FNCDEL2=1.-F2(I)
    FNCTHE2=F2(1)*(1.-F2(I))
    SMDEL=SMDEL+(FNCDEL2+FNCDEL1)/2.*(YDL(I)-YDL(I-1))
    SMTHE=SMTHE+(FNCTHE2+FNCTHE1)/2.*(YOL (I)-YDL(I-1))
    FNCDEL1=FNCDEL2
    FNCTHE1=FNCTHE2
56 CONTINUE
    HISF=SMDEL/SMTHE
    IF(GEE2.EQ.O.)GO TO 151
    SMDEL=0.0
    SMTHE=0.0
    FNCDEL1=1.-G2(1)
    FNCTHE1=G2(1)*(1.-G2(1))
    DO 57 I =2.NMAXG
    FNCDFL2=1.-G2(1)
    FNCTHEP=G2(1)*(1.-G2(1))
    SMDEL=SMDEL + (FNCDEL2+FNCDEL1)/2.*(YDL (1)-YDL (I-1))
    SMTHE=SMTHE+(FNCTHE?+FNCTHE1)/2.*(YDL (1)-YDL (I-1))
    FNCDFL1=FNCNFLZ
    FNCTHE1=FNCTHE2
```

```
    5 7 ~ C O N T I N U E :
    HISG=SMDEL/SMTHE
151 CONTINUE
    SUMFRR=0.0
    FNCFRR1=1.-F2(1)*RHORHOE(1)
    DO 93 I =2.NMAXF
    FNCFRR2=1.-F2(I)*RHORHOF(I)
    SUMFRR=SUMFRR+(FNCFRR2+FNCFRRI)/2.*(YDL(I)-YDL(I-1))
    FNCFRR1=FNCFRR2
    93 CONTINUE
    DSDLF=SUMFRR
    IF(GEF2.EQ.O.)GO TO OS
    SUMGRR=0.0
    FNCGRR1=1.-G2(1)*RHORHOE(1)
    DO 97 I=2.NMAXG
    FNCGRR2=1.-G2(1)*RHORHOE (1)
    SUMGRR=SUMGRR+(FNCGRR2+FNCGRR1)/2.*(YDL (I)-YDL (!-1))
    FNCGRR1=FNCGRR2
9 7 \text { CONTINUE}
    OSNLG=SUMGRRR
9 6 ~ C O N T I N U E ~
    REX=CAPRS*XXL*UES2HE?*RERS2**2/RURDRUS
    RDXL=REX/XXL
    RETSF=RDXL*TSDLF
    IF(GEE2.NE.O.)RETSG=RDXL*TSDLG
    1*WEDS2HE/UES2HE2
        REDSF=RDXL*DSDLF
        IF(GEE2.NE.O.)REDSG=RDXL*DSDLG
    1*WEDS2HE/UES2HEZ
        HEDCPHE=1.-UES2HE2**?-WEDS2HE**2
        QBAR=PHIR(1)*RURDRUS*R2**J*UES2HE2*CAPRS/(DR**INB)*(ZETA(2)
    1 -ZETAW2)/DELETA(1)
        ST=QBAR/(RERS2*CAPRS*UES2HE2*(FRO*(1.-HEDCPHE) +HEDCPHE-ZETAW2))
        WRITE(6.121)
121 FORMAT(1HO,7X,3HCFF,10X,9HTHETA*/LF,7X,9HDELTA*/LF,9X,3HREX,11X,
    19HRETHETA*F,7X,9HREDFLTA*F,9X,4HQBAR,13X,2HST)
        WRITE(6,122)CFF,TSDLF,DSDLF,REX,RFTSF,REDSF,QBAR,ST
122 FORMAT(8E16.4)
    WRITE(6,124)
124 FORMAT(1HO,7X,4HHI*F)
    WRITE(6.122)HISF
    IF(GEE2.EQ.O.)GO TO 98
    WRITE(6,1.31)
131 FORMAT(1HO.7X,3HCFG.1OX,9HTAUF/TAUG.6X.9HTHETA*/LG,7X.
    19HDELTA*/LG,7X,9HRETHETA*G,7X.9HREDELTA*G,9X,4HHI*G)
        WRITE(6,122)CFG.TAFDTAG.TSDLG.DSDLG.RETSG.REDSG,HISG
    9 8 ~ C O N T I N U E ~
        I COUNT = I COUNT + I
123 CONT INUE
    IF(XISTOP.LE.XI2)GO TO 130
    XIl=XI2
    XIBAR1 = XIBAR2
    CAPUI=CAPUZ
    CAPP1 = CAPP2
    CAPZ1= CAPZ2
    GO TO 40
130 CONTINUE
    STOP
    END
```

ABCDGS.- Subroutine ABCDGS computes coefficients G_{n} and g_{n} for the boundary layer equations by using recursion formulas (32). The flow diagram for subroutine ABCDGS is as follows: (In this flow diagram, A, B, C, D, G, and g are used as general notation for such coefficients as \bar{A}, A^{*}, \hat{A}, etc.)

The program listing for subroutine ABCDGS is as follows:

```
        SURROUTINF ABCDGS(NUMDELE,DELETA,XIBARA,DELXI,FA,VA,CAPMAZ,ICHD,
    1F1,XIBCPUA,XIBCPPA,RHOEROA,GI,THETA1,XIBCPZA,THETAA,NESZHEA,
    2XMPRMAZ,F2,WEDS2HF,G?,CAFG.SMLG,XK)
        DIMENSION DELETA(550),F1(350),F2(350),FA(350),G1(350),G2(350).
    1 THETA1(350), THETA2(350), THETAA (350), VA(350), CAPMA2 (350), CAPA (350),
    2CAPB(350), CAPC(350), CAPD(350),RHOEROA(350), XMPRMA2(350),CAPG(350),
    3SMLG(350)
        FCT1=2.*XK/(1.+XK)
        FCT2=2./(1.+XK)
        DO 10 1=2.NUMDELE
        DELDEL2=2.*DELETA(I)*DELETA(I-1)
        XIDELFA = XIBARA/DELXI*FA(I)
        VAOLDL?=VA(I)/(2.*(nFLETA(I)+DELFTA(I-1)))
        TMDLDL2=(CAPMA2(I)*FCT2+CAPMAZ(I-1)*FCT1)/DELDEL?
        CAPA(1)=VADLDL2-CAPMA2(I)*FCT2/DELDELZ
        CAPB(I)=XIDELFA+TMDLNL2
        CAPC(I)=-(VADLDL2+CADMA2(1-1)*FCT1/DELDEL2)
        IF(ICHD.EQ.1)GO TO 2n
        IF(ICHD.EQ.2)GO TO 3n
        IF(ICHD.EQ.3)GO TO 4n
20 CAPD(I)=-CAPA(I)*F1(I+1)+(XIDELFA-TMDLDL2)*F1(I)-CAPC(I)*F1(I-1)
    1-xIBCPUA*FA(1)**2-xIRCPPA*RHOEROA(1)
        GO TO 10
30 CAPD(1)=-CAPA(I)*G1(1+1)+(XIDELFA-TMDLDL2)*G1(1)-CAPC(I)*G1(I-1)
        go TO 10
40 CAPD(I)=-CAPA(I)*THETA1(I+1)+(XIDELFA-TMDLDLZ)*THETA1(I)-CAPC(I)*
    1THETA1(I-1)+XIBCPZA*FA(I)*(THETAA(1)-1.)-UES2HEA**2/DELDEL2*
    2(XMPRMA2(I)*FCT2*(F1(I+1)**2+F2(I+1)**2-F1(I)**2-F2(I)**2)
    3-XMPRMA2(I-1)*FCT1*(F1(1)**2+F2(1)**2-F1(I-1)**2-F2(I-1)**2))
    4-WEDS2HE**2/DELDEL2*(XMPRMA2(I)*FCT2*(G1(1+1)**2+G2(I+1)**2
    5-G1(I)**2-G2(I)**2)-xMPRMA2(I-1)*FCT1*(G1(I)**2+G2(I)**2-GI(I-1)
    6**2-G2(1-1)**2))
10 C.ONTIN(JE
    CAPG(2)=-CAPA(2)/CAPR(2)
    SMLG(2)=CAPD(2)/C^PB(2)
    NO 50. I = 3,NUMDFLE
    RCG=CAPB(I)+CAPC(I)*rAPG(I-1)
    CAPG(i)=-CAPA(I)/BCG
    SMLG(I)=(CAPD(I)-CAPr(I)*SMLG(I-1))/ACG
    5n CONTINUE
    RETURN
    END
```

COMPUTE.- Subroutine COMPUTE determines the number of equations (or $\Delta \eta$ steps) to be used and computes new values for the dependent variables by using formula (31), (42), or (43). The flow diagram for subroutine COMPUTE is as follows: (In this flow diagram, G and g are used as general notation for such coefficients as $\overline{\mathrm{G}}, \overline{\mathrm{g}}, \mathrm{G}^{*}$, etc.)

The program listing for subroutine COMPUTE is as follows:

```
            SUBROUTINE COMPUTE(NMAX,TEST,NUMDELE, DELETA,EPSLONE,CAPG,SMLG, 1 ПUM?
    DIMENSION CAPG(350),.SMLG(350),DUM2(350),DELETA(350)
C
C TEST-FINDINGEDGE
C
    KMAX=NMAX-10
    DO 1O JJ=KMAX,NUMDELF
    TSTVAL=EPSLONE*DELETA(JJ)
    CKVAL=TEST*(1.0-CAPG.(JJ))-SMLG(JJ)
    IVAL = JJ+4
    IF(ABS(CKVAL).LE.ABS(TSTVAL))GO TO 20
    10 CONTINUE
    2n NMAX:IVAL
    COMPUTEDUM 2S
21 CONTINUE
    NBACK=-(NMAX-1)
    MP = - ?
    DO 30 NF=NBACK.M2
    KF=IARS(NF)
    DUM2 (KF)=CAPG(KF) *DUM2(KF+1)+SMLG(KF)
30 CONTINUE
    RETURN
    END
```

CALCM.- Subroutine CALCM computes the viscosity functions. The flow diagram for this subroutine is as follows:

The program listing for subroutine CALCM is as follows:

```
    SUBROUTINE CALCM(ZETAW*UEDSZHE,F2.wEDS2HE,ZETAE,
    1 SHE,PR, XMBAR,XMCIRC,XMSTAR,XMPRIM,PHIR,HSHE,
    2 RERS,XI,XNBAR,R,J, DELETA,
    3RURDRUS, CAPRS.SUMRER,AP,BP,CP. ABTAB,FCFTAB,NFCFAB,NMAXG.
    4G?)
    DIMENSION F2(350),G2(350), XMBAR(350), XMCIRC(350).
    1 XMSTAR(350), XMPRIM(350), PHIR(350), DELETA (350), SUMRER(350).
    2ABTAB(20),FCFTAB(20),EMUSDMU(350)
        COMMON/EPSDMU/EPSDMU(350)
        COMMON/TABLE1/RHOERO?(350)
        COMMON/TABLE2/YDL (350),RHORHOE (350)
        COMMON/THREE/NUMETA.NMAXF
    COMMON/FEB12/VWA
    COMMON/FEB11/PRRTTAB(2O). YDDPRT(20),NYP
    COMMON/HDCAPHE/HDCAPHE (350),GEE2
    COMMON/MUUSE/IUSEEMU,MPWFMU
    COMMON/FBAR/FBARTAB(?O).IFBLU,YDDFB(20),NFBY
    COMMON/I WLDMP/I WLDMP
    HRDCPHE = ZETAE-UEDS2HF**2-WEDS2HE**2
    RURDRUS = SQRT (HRDCPHE/HSHE)* (HSHE +SHE) / (HRDCPHE+SHE )
    1*RERS*HRDCPHE
    2/HSHE
    RUSDRUR=1./RURDRUS
    SMRER=0.0
    FNCRER1=RHOERO2(1)
    IF(GEE2.NE.O.)GO TO 24
    DO 25 I=2.NMAXF
    FNCRER2=RHOERO2(I)
    SMRER=SMRER+(FNCRER2+FNCRER1;/2•*DELETA(1-1)
    IF(F2(I).GE..995)GO TO 23
    FNCRFR1=FNCRER2
25 CONTINUE
    GO TO 23
24 CONTINUE
    OO 22 I=2.NMAXG
    FNCRER2=RHOFRO2(1)
    SMRER=SMRER + (FNCRER2 +FNCRER1)/2.*DELETA (1-1)
    1F(G2(I).GE..995)GO TO 23
    FNCRERI =FNCRER2
22 CONTINUE
23 CONTINUE
    SMDEL =0.0
    SMTHF=0.0
    IF(GEE2.NF.O.)GO TO ?6
    FNCDEL1=1.-F2(1)
    FNCTHE1=F2(1)*(1.-F2(1))
    DO 2.7 1 =2,NMAXF
    FNCDFL2=1.-F2(I)
    FNCTHE2=F2(1)*(1,-F2(1))
    SMDEL = SMDEL+(FNCDEL2+FNCDEL1)/2.*(YDL(1)-YDL(I-1))
    SMTHE = SMTHE+(FNCTHE2 +FNCTHE1)/2•*(YDL(I)-YDL(I-1))
    FNCDEL1 =FNCDEL?
    FNCTHE1=FNCTHE2
27 CONTINUE
    GO TO 28
```

```
26 CONTINUE
    FNCDEL1=1.-G2(1)
    FNCTHE1=G2(1)*(1.-G2(1))
    DO 11 1=2.NMAXG
    FNCDFL2=1.-G2(I)
    FNCTHE2=G2(I)*(1.-G2(I))
    SMDEL=SMDEL+(FNCDEL2+FNCDEL1)/2.*(YDL (1)-YDL (1-1))
    SMTHE = SMTHE + (FNCTHE2+FNCTHE1)/Z.*(YDL (I)-YDL (I-1))
    FNCDEL1 =FNCDEL2.
    FNCTHE1=FNCTHE2
    11 CONTINUE
28 CONTINUE
    HIS = SMDEL/SMTHE
    FBARMAX=AP+BP*HIS+CP*HIS*HIS
    \capO 1? I=1,NUMFTA
    PHIR(I)=SQRT (HDCAPHF (I)/HRDCPHE ) * (HRDCPHE +SHE)/(HDCAPHE (I) +SHE)
    EMUSDMU(I)=RUSDRUR*RHORHOF(I)*RERS/PHIR(I)
1?. CONTINUE
    DO 1O I=1,NUMETA
    YDN=SUMRER(I)/SMRFR
    CALL DISCOT(YDD,YDD,YDDPRT,PRTTAB,PRTTAB,-11,NYP,0,PRT)
    IF(I.EQ.1)GO TO 32
    IF(IFBLU.EQ.1)GO TO 13
    IF(YDD.LF...1)FBAR=.4*YDD
    IF(YDD.GT..1.AND.YDD.LE..3)FBAR=.04+i(YDD-.1)/.2)*(FBARMAX-.04)
    IF(YDD.GT . . 3)FBAR=FBARMAX
    GO TO 14
13 CALL DISCOT(YOD,YDD,YDDFB,FBARTAB,FBARTAR,-11,NFBY,O,FBAR)
14 CONTINUF
    IF(I.EQ.NUMETA)GO TO 32
    IF(GFE2.NE.O.)GO TO 29
    EPSDMU(I)=(2.**I)**XNBAR/R**J* FBAR**2*EMUSDMU(I)*RHORHOE(I)**2*
    1.SMRFR**2
    1*ABS((F2(1+1)-F2(I-1)i/(DELETA(I)+DELETA(1-1)))
        GO TO }3
OO CONTINUF
        EPSDMU(I)=(2.**I)**XNBAR/R**J*FBAR**2*EMUSDMU(1)*RHORHOE(1)**2
    1*GMRFR**?
    1*SQRT(ABS(((F2(I+1)-F2(I-1))/(DELFTA(I)+DELETA(I-1)))**2
    1+((GP(I+1)-G2(I-1))/(DELETA(I)+DELETA(I-1)))**2
    1*(wFOS2HF/UEDS2HF)**`))
34 CONTINUE
        IF(IWLDMP.FQ.1.AND.1.NE.2)GO TO 15
        IF(I.NE.2)GO TO }3
        IF(GEE2.NF.O.)GO TO 40
        FDCFD2=((RHORHOE(1)*VWA)/(PHIR(1)/RERS*(2.*R**J)/((2.**I)**XNBAR)*
    1F2(2)/DELETA(1)*RURDRUS))*2.
        GO TO 41
40 FDCFD2=((RHORHOE(1)*VWA)/(PHIR(1)/RERS*(2.*R**J)/((2.**I)**XNBAR)*
    1 SQRT((F2(2)/DELETA(1))**2+(G2(2)/DELETA(1))**2*(WEDS2HE/UEDS2HE)**
    22)*RURDRUS)!*2.
    2*UFDS2HE/SQRT(WEDS2HF**2+UEDS2HE**?)
41 CONTINUE
    CALL FTLUP(FDCFD2,AB,1,NFCFAB,FCFTAB,ABTAB)
    IF(GEE2.NE.C.)GO TO 35
15 CONTINUE
    IF(IWLDMP.EQ.1)GO TO 16
    ADL=AB*SQRT((2.**I)**XNBAR)/(CAPRS*SGRT(EMUSDMU(1))*RHORHOE(1)
```

```
    1*RFRC
    1*UEDS2HE*SQRT(R**J)*GQRT(ABS(F2(2))/DELETA(1)))
    GO TO 36
16 ADL=AB*SQRT((2.*XI)**XNBAR)*SQRT(EMUSDMU(1))/(CAPRS*FMUSDMU(I)
    1*SQRT (RHORHOE (1))*SQRT (RHORHOE (I))*RERS
    1*UFDS2HE*SQRT(R**J)*SQRT(ABS(F2(2))/DELFTA(1)))
        GO TO 36
35 CONTINUF
        ADL=AB*SQRT((2.*XI)**XNBAR)/(CAPRS*SQRT(EMUSDMU(1))*RHORHOE(1)
    1*RFRS
    1*UFDS2HE*SQRT(R**J)
    1*((F2(2)/DELETA(1))**2+(G.2(2)/DELETA(1))**2*(WEDS2HE/UEDS2HE)**2)
    1***25)
35 CONTINUE
33 EPSDMU(I)=EPSOMU(I)*(1.-EXP(-YDL (I)/ADL))**2
51 IF(EPSDMU(I).LT.O.)EPSDMU(I)=C.
    GO TO 31
32 FPSDMU(I)=0.0
31 CONTINUE
        IF(IUSEEMU.FQ.O)EPSDMU(I)=0.
        XMRAR(I)=PHIR(I)*(1•+EPSDMU(I))
        XMCIRC(I)=XMBAR(I)
        XMSTAR(I)=PHIR(I)/PR*(1.+EPSDMU(I)*PR/PRT)
        IF( MPWFMU.FQ.1)GO TO 37
        XMPRIM(I)=PHIR(I)/PR*(1.-PR)/(1\bullet-ZETAW)
        GO TO 10
37 XMPRIM(I)=PHIR(I)/PR*(1.-PR)/(1.-ZETAW)*(1.+EPSDMU(I)*PR/PRT*(1.-P
    1RT)
    1/(1•-DR))
10 CONTINUE
    RFTIIRN
    FNO
```


USAGE

The program is run on the Control Data 6000 series computer under the SCOPE 3.0 operating system. Minimum machine requirements are 75000 octal locations of core storage. The time required to calculate a grid point is approximately 0.002 second per iteration. Each x-step typically uses three iterations. The restrictions and usual values for input quantities are given in their description.

Input Description
The FORTRAN NAMELIST capability is used for data input with NAM1 as the NAMELIST name. The maximum allowable dimension appears following the variable name.

NUMETA maximum number of steps in η direction, 350 maximum

NMAXF initial guess at number of η steps to outer edge of F profile, generally out to $\mathrm{F}=0.999$

Note: The procedure to obtain NMAXF is to (a) estimate $\Delta \eta$, making sure that there are at least four steps in linear portion of profile near wall, (b) choose a K value, (c) estimate an η_{e} value, and (d) solve equation (24) for $\mathrm{N}=\mathrm{NMAXF}$. Generally, NUMETA $=$ NMAXF +50 has been used successfully.

NMAXG initial guess at number of η steps to outer edge of g profile, generally out to $\mathrm{g}=0.999$

DELETA Value of $\Delta \eta$ nearest wall (that is, $\Delta \eta_{1}$); there must be at least four steps in linear portion of profile near wall

XK
$\Delta \eta_{\mathrm{n}} / \Delta \eta_{\mathrm{n}-1} \quad$ ratio, generally taken as 1.02
value of $\boldsymbol{\xi}$ at input station

DELXIO initial $\Delta \xi$, generally $\left(10^{-3}\right)\left(\xi_{0}\right)$

XITEST value of ξ where $\Delta \xi$ is increased by a factor of 10

XIST $\varnothing \mathrm{P} \quad$ value of ξ where solution is to be terminated

FTAB (100) input u / u_{e} profile (values must correspond to YL table); there must be at least four points in linear region near wall

ETATAB (100) input η table, used when input profiles are known as $f(\eta)$ rather than $f(y / L)$ (it can be omitted as input if not required)

VWTAB
(75) $\quad v_{w} / u_{e}$ for axisymmetric or two-dimensional flow, $\mathrm{v}_{\mathrm{W}} / \mathrm{w}_{\mathrm{e}}$ for swept-cylinder problem (values must correspond to XL table)

EPSL \varnothing NE accuracy criteria for $\partial(F, g, \theta) / \partial \eta$ at outer edge of profile, generally set equal to 0.05 for turbulent flows and 0.0001 for laminar flows

EPSL \varnothing NW convergence criteria for iterations on F, g, and θ profiles; allowable percent change in wall slope between iterations, 0.01 generally used

GTAB (100) input w / w_{e} profile (values must correspond to YL table and must be zero if not used)

UEDSTAB
(75) $u_{e} / \sqrt{2 \mathrm{H}_{e}}$ table (values must correspond to XL table)

WEDS2HE
$\mathrm{w}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{\mathrm{e}}}$
PR
molecular Prandtl number

ZETWTAB (75) $\quad \zeta_{\mathrm{w}}$ table (values must correspond to XL table)
XNBAR

RERSTAB
(75) $\quad \rho_{\mathrm{e}} / \rho_{\mathrm{S}}$ table (values must correspond to XL table)

CAPRS
reference Reynolds number, $\rho_{\mathrm{s}} \sqrt{2 \mathrm{H}_{\mathrm{e}}} \mathrm{L} / \mu_{\mathrm{s}}$; the subscript "s" must be taken as isentropic stagnation conditions except for sweptcylinder problems in which " s " is taken as stagnation-line values

RTAB (75) r/L table (values must correspond to XL table)
body shape index ($\mathrm{j}=0$ for two-dimensional flows; $\mathrm{j}=1$ for axisymmetric flows)

RH \emptyset TAB (100) input ρ_{e} / ρ table, can be used instead of input ζ profile, values must correspond to YL table (can be omitted as input if not required)

SHE
Sutherland's constant, $S / H_{e}=202 / T_{S}$, where T_{S} is in ${ }^{0} R$ for air

ZETATAB (100) input ζ profile, values must correspond to YL table (can be omitted as input if not required)

ITHETA

HSHE

XL

NUMX

YL

NUMY

X0
$\emptyset L$

DUDXTAB

DZDXTAB

FRO

NSTEPS
code for input temperature profile (ITHETA $=1$ if RH \emptyset TAB used; ITHETA = 2 if ZETATAB used)
yaw parameter, $1-\frac{\mathrm{w}_{\mathrm{e}}{ }^{2}}{2 \mathrm{H}_{\mathrm{e}}}$
(75) table of x / L values, first entry must equal x_{0} value
number of values in XL table, 75 maximum
(100) table of y / L values for initial profiles, first entry must equal zero number of values in YL table, 100 maximum
initial value of x / L, must not equal zero
reference length, given in feet
(75) $\mathrm{d}\left(\mathrm{u}_{\mathrm{e}} / \sqrt{2 \mathrm{H}_{e}}\right) / \mathrm{d}(\mathrm{x} / \mathrm{L})$ table, values must correspond to XL table
(75) $\mathrm{d} \zeta_{\mathrm{W}} / \mathrm{d}(\mathrm{x} / \mathrm{L})$ table, values must correspond to XL table
temperature recovery factor, generally 0.85 for laminar flows and 0.89 for turbulent flows; used to compute Stanton number
number of ξ steps between profile printouts (can be omitted as input if XLPR table is used to designate printout)

$\left.\begin{array}{l} \mathrm{AP} \\ \mathrm{BP} \\ \mathrm{CP} \end{array}\right\}$		constants A, B, and C for $\bar{f}_{\text {max }}$ (see eq. (56a))
ABTAB	(20)	$\begin{aligned} & \text { table of } A_{b} \text { values in Van Driest damping } \\ & \text { function (eq. (59)), input as } f(\text { FCFTAB) } \end{aligned} \quad \begin{aligned} & \text { Generally } \\ & \text { use values } \end{aligned}$
FCFTAB	(20)	$\frac{\rho_{\mathrm{w}} \mathrm{v}_{\mathrm{w}}}{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}}} \frac{2}{\mathrm{C}_{\mathrm{f}}}$ values corresponding to ABTAB values $\left\{\begin{array}{l}\text { from sample } \\ \text { case shown }\end{array}\right.$
NFCFAB		number of ABTAB values in table, 20 maximum
PRTTAB	(20)	turbulent Prandtl number table, input as $f(y / \delta)$
YDDPRT	(20)	y/ δ values corresponding to PRTTAB, values must start at zero
NYP		number of values in PRTTAB table, 20 maximum
XLPR	(30)	x / L values where profile printout is required (can be omitted as input if NSTEPS is used)
IVEG		$\begin{aligned} & =1 \text { for printout of } V \text { profile } \\ & =2 \text { for } \epsilon / \mu \text { profile } \\ & =3 \text { for } g \text { profile } \end{aligned}$
INIT		$\begin{aligned} = & 0 \text { for } \Delta \xi_{\text {initial }}=\text { DELXI0 } \\ = & 1 \text { for small } \Delta \xi_{\text {initial }} ; \text { after } 30 \quad \xi \text { steps, } \Delta \xi \text { is set back } \\ & \text { to DELXI0 (used to smooth input profile) } \end{aligned}$
IUSEEMU		$=0$ for laminar $(\epsilon / \mu \equiv 0)$ solution $=1$ for turbulent solution
MPWEMU		$\begin{aligned} & =0 \text { for } \operatorname{PRTTAB}=N_{P r, T} \text { values } \\ & =1 \text { for } \operatorname{PRTTAB}=N_{P r, t} \text { values } \end{aligned}$
FBARTAB	(20)	\bar{f} values corresponding to YDDFB values
IFBLU		$\begin{aligned} & =0 \text { for computing } \overline{\mathrm{f}} \\ & =1 \text { for table lookup of } \overline{\mathrm{f}} \end{aligned}$

YDDFB

NFBY number of FBARTAB values in table

IWLDMP $\quad=0$ for using wall properties in wall damping function $=1$ for using local properties in wall damping function (should be set equal to 0 for swept-leading-edge situation)

Output Description

The output of program D2630 consists of printing only. The main program prints the NAMELIST input and the output described below. If IVEG $=2$ in the input, the ϵ / μ profile will be printed as in the sample output. For IVEG $=1$, the V profile is printed in the place of EPSDMU, whereas IVEG $=3$ prints the g profile. The frequency of the output is controlled by one of two input quantities. If a table of x / L values is given for XLPR, printout will appear for the computation step nearest each value. Otherwise, NSTEPS is used and denotes the number of ξ steps between profile printouts.

THETA*/LF	$\left(\theta^{*} / \mathrm{L}\right)_{\mathrm{F}}$
DELTA*/LF	$\left(\delta^{*} / \mathrm{L}\right) \mathrm{F}$
REX	$\underline{\rho e^{u} e^{\mathrm{x}}}$.
	μ_{e}
RETHETA*F	
	μ_{e}
REDELTA*F	$\underline{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \delta^{*} \mathrm{~F}}$
	μ_{e}
QBAR	heat-tra
ST	Stanton
HI* F	$\left(\mathrm{H}_{\mathrm{i}}^{*}\right)_{\mathrm{F}}$
If a spanwise velocity profile " g " is used, the following output a	
CFG	wall-ski
TAUF/TAUG	ratio of
THETA*/LG	$\left(\theta^{*} / \mathrm{L}\right) \mathrm{g}$.
DELTA*/LG	$\left(\delta^{*} / L\right)_{\mathrm{g}}$
RETHETA*G	$\underline{\rho} \mathrm{e}^{u} \mathrm{e}^{\theta_{\mathrm{g}}^{*}}$
	μ_{e}
REDELTA*G	$\underline{\rho}{ }^{u}{ }^{u} e^{\delta_{g}^{*}}$
	${ }^{\mu} \mathrm{e}$
HI*G	$\left(\mathrm{H}_{\mathrm{i}}^{*}\right)_{\mathrm{g}}$

Sample Case

The listing of the input data for the McLafferty-Barber Mach 3 adverse pressure gradient flow sample case, as described in reference 16, is as follows:

\$NAM1

```
NIJMFTA=?30.
NMAXF=100,
NMAXG=1.
nFLFTA =2.F-2.
XK=1.\cap?,
xI\cap=1.6FG.
DFLXIO= -15F3.
X\TFCT=1.F!5.
XISTOP=1.6.370GEG,
FTAS=0...n858,.1716..2574..3432..41..5..58..627..664..683..718..743,
.789..826..872..912..945..964..978..988..994..999..9995..9997..9999.1..9
VWTAR=R*O..
FPSLONF = .5F-3.
FPSLONW=.O1.
GTAR=27*O..
UFDSTAB=.8015..790..775..754..74..701..663..625.
WFOS?HF=O..
DR=.7.
ZFTWTAR=8*.93.
XNPAR=.5.
RERSTAB=.0762..0872..10:..1218..1.377..1841..2352.. 290.
CAPRS=1.OBF6.
```

```
RTAB=8*1..
J=0.
SHE=.331.
ZETATAB=.93..936..942..948..954..9587..965..9706..9739..9765,.9778.
.9802..9820..9852,.9878,.9910..9938..9962,.9975..9985..9992..9996..99993.
.99996..99998..99999.1..
I THETA=2,
4SHF=1..
XL=.001..3..63.1..1.25.1.88.2.51.3.14.
NUMX=8,
YL=0...001,.002,.003,.004,.006..01..015,.020..025..030..040..050..07.
.09..12..15..18,.2..22..24..26..28,.3..32..34.1..
NUMY=?7.
x0=.пn1.
CL=.0834.
DUDXTAB=-.0295,-.0415,-.05,-.0575,-.06,-.0615.-.06,-.058.
DZDXTAB=8*0..
FRn=.89.
NSTEPS=1.
\DeltaP=.1.
RP=0..
CD=0.,
ABTAB(1)=60.,26.,18.5.14.8.12.5.11.2,10..9.1.6..3.8.3.,
FCFTAB(1)=-1.,0.,1.,2.,3.,4.,5.,5.,12.,24.,100..,
NFCFAR=1:.
PRTTAB=4*.9,
YDDPRT=0.,.5,1.,15.,
```

NYP=4.
$X L P R=\cdot 3 \cdot .63 \cdot 1 \cdot, 1 \cdot 25 \cdot 1 \cdot 88 \cdot 2 \cdot 51 \cdot 3 \cdot 14$,

IVFG=?.

INIT=0.

IUSFF゙MU=1.

MPWEMU=1.

IFRLU=?
$I W L D M P=O$.
\pm

The sample output for this case is as follows:

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., February 4, 1971.

APPENDIX
 LANGLEY LIBRARY SUBROUTINES

Subroutine FTLUP

Language: FORTRAN

Purpose: Computes $y=F(x)$ from a table of values using first- or second-order interpolation.
An option to give y a constant value for any x is also provided.

Use: CALL FTLUP(X, Y, M, N, VARI, VARD)

X The name of the independent variable x .
$\mathbf{Y} \quad$ The name of the dependent variable $\mathrm{y}=\mathrm{F}(\mathrm{x})$.
M The order of interpolation (an integer)
$\mathrm{M}=0$ for y a constant. VARD(I) corresponds to VARI(I) for
$I=1,2, \ldots, N$. For $M=0$ or $N \leqq 1, y=F(\operatorname{VARI}(1))$ for any value of x. The program extrapolates.
$M=1$ or 2. First or second order if VARI is strictly increasing (not equal).
$\mathbf{M}=-1$ or $\mathbf{- 2}$. First or second order if VARI is strictly decreasing (not equal).
$\mathrm{N} \quad$ The number of points in the table (an integer).
VARI The name of a one-dimensional array which contains the N values of the independent variable.
VARD The name of a one-dimensional array which contains the N values of the dependent variable.

Restrictions: All the numbers must be floating point. The values of the independent variable x in the table must be strictly increasing or strictly decreasing. The following arrays must be dimensioned by the calling program as indicated: VARI(N), VARD(N).

Accuracy: A function of the order of interpolation used.

References: (a) Nielsen, Kaj L.: Methods in Numerical Analysis. The Macmillan Co., c.1956, pp. 87-91.
(b) Milne, William Edmund: Numerical Calculus. Princeton Univ. Press, c.1949, pp. 69-73.

Storage: 4308 locations.
Error condition: If the VARI values are not in order, the subroutine will print TABLE BELOW OUT OF ORDER FOR FTLUP AT POSITION $x x x$ TABLE IS STORED IN LOCATION $x x x x x x$ (absolute). It then prints the contents of VARI and VARD, and STOPS the program.

Subroutine date: September 12, 1969.

APPENDIX - Continued

Subroutine DISCOT

Language: FORTRAN

Purpose: DISCOT performs single or double interpolation for continuous or discontinuous functions. Given a table of some function y with two independent variables, x and z, this subroutine performs K_{X} th- and K_{Z} th-order interpolation to calculate the dependent variable. In this subroutine all singleline functions are read in as two separate arrays and all multi-line functions are read in as three separate arrays; that is,

x_{i}	$(i=1,2, \ldots, L)$
y_{j}	$(j=1,2, \ldots, M)$
z_{k}	$(k=1,2, \ldots, N)$

Use: CALL DISCOT (XA, ZA, TABX, TABY, TABZ, NC, NY, NZ, ANS)
XA The x argument
ZA The z argument (may be the same name as x on single lines)

TABX A one-dimensional array of \mathbf{x} values
TABY A one-dimensional array of y values
TABZ A one-dimensional array of z values
NC A control word that consists of a sign (+ or -) and three digits. The control word is formed as follows:
(1) If $N X=N Y$, the sign is negative. If $N X \neq N Y$, then NX is computed by DISCOT as $\mathrm{NX}=\mathrm{NY} / \mathrm{Nz}$, and the sign is positive and may be omitted if desired.
(2) A one in the hundreds position of the word indicates that no extrapolation occurs above $\mathbf{z}_{\text {max }}$. With a zero in this position, extrapolation occurs when $\mathrm{z}>\mathbf{z}_{\max }$. The zero may be omitted if desired.
(3) A digit (1 to 7) in the tens position of the word indicates the order of interpolation in the x-direction.
(4) A digit (1 to 7) in the units position of the word indicates the order of interpolation in the z -direction.

NY The number of points in y array
NZ The number of points in z array
ANS The dependent variable y

APPENDIX - Continued

The following programs will illustrate various ways to use DISCOT:

CASE I: Given $\mathbf{y}=\mathbf{f}(\mathbf{x})$
$\mathrm{NY}=50$
NX (number of points in x array) $=N Y$
Extrapolation when $z>z_{\text {max }}$
Second-order interpolation in x-direction
No interpolation in z-direction
Control word $=-020$
DIMENSION TABX (50), TABY (50)
1 FORMAT (8E 9.5)
READ $(5,1)$ TABX, TABY
READ $(5,1)$ XA
CALL DISCOT (XA, XA, TABX, TABY, TABY, -020, 50, 0, ANS)
CASE II: Given $y=f(x, z)$
$\mathrm{NY}=800$
$\mathrm{NZ}=10$
NX $=\mathrm{NY} / \mathrm{NZ}$ (computed by DISCOT)
Extrapolation when $z>z_{\text {max }}$
Linear interpolation in x-direction
Linear interpolation in z -direction
Control word = 11
DIMENSION TABX (800), TABY (800), TABZ (10)
1 FORMAT (8E 9.5)
READ (5,1) TABX, TABY, TABZ
READ (5,1) XA, ZA
CALL DISCOT (XA, ZA, TABX, TABY, TABZ, 11, 800, 10, ANS)
CASE III: Given $y=f(x, z)$
$\mathrm{NY}=800$
$\mathrm{NZ}=10$
NX = NY
Extrapolation when $z>z_{\text {max }}$
Seventh-order interpolation in x-direction
Third-order interpolation in z-direction
Control word $=-73$
DIMENSION TABX (800), TABY (800), TABZ (10)
1 FORMAT (8E 9.5)
READ $(5,1)$ TABX, TABY, TABZ
READ $(5,1)$ XA, ZA
CALL DISCOT (XA, ZA, TABX, TABY, TABZ, -73, 800, 10, ANS)
CASE IV: Same as Case III with no extrapolation above $\mathrm{z}_{\max }$. Control word $=\mathbf{- 1 7 3}$ CALL DISCOT (XA, ZA, TABX, TABY, TABZ, -173, 800, 10, ANS)

APPENDIX - Continued

Restrictions: See rule (5c) of section "Method" for restrictions on tabulating arrays and discontinuous functions. The order of interpolation in the x - and z-directions may be from 1 to 7 . The following subprograms are used by DISCOT: UNS, DISSER, LAGRAN.

Method: Lagrange's interpolation formula is used in both the x - and z-directions for interpolation. This method is explained in detail in reference (a) of this subroutine. For a search in either the x- or z -direction, the following rules are observed:
(1) If $x<x_{1}$, the routine chooses the following points for extrapolation:

$$
x_{1}, x_{2}, \ldots, x_{k+1} \text { and } y_{1}, y_{2}, \ldots, y_{k+1}
$$

(2) If $x>x_{n}$, the routine chooses the following points for extrapolation:

$$
x_{n-k}, x_{n-k+1}, \cdots, x_{n} \text { and } y_{n-k}, y_{n-k+1}, \cdots, y_{n}
$$

(3) If $x \leqq x_{n}$, the routine chooses the following points for interpolation:

When k is odd,

When k is even,

$$
x_{i-\frac{k}{2}} x_{i-\frac{k}{2}+1}, ._{i-\frac{k}{2}+k} \text { and } y_{i-\frac{k}{2}}, y_{i-\frac{k}{2}+1}, m_{i-\frac{k}{2}+k}
$$

(4) If any of the subscripts in rule (3) become negative or greater than n (number of points), rules (1) and (2) apply. When discontinuous functions are tabulated, the independent variable at the point of discontinuity is repeated.
(5) The subroutine will automatically examine the points selected before interpolation and if there is a discontinuity, the following rules apply. Let x_{d} and x_{d+1} be the point of discontinuity.
(a) If $x \leqq x_{d}$, points previously chosen are modified for interpolation as shown:

$$
x_{d-k}, x_{d-k+1}, \cdots, x_{d} \text { and } y_{d-k}, y_{d-k+1}, \ldots, y_{d}
$$

(b) If $x>x_{d}$, points previously chosen are modified for interpolation as shown:

$$
x_{d+1}, x_{d+2}, \ldots, x_{d+k} \text { and } y_{d+1}, y_{d+2}, \ldots, y_{d+k}
$$

(c) When tabulating discontinuous functions, there must always be $k+1$ points above and below the discontinuity in order to get proper interpolation.
(6) When tabulating arrays for this subroutine, both independent variables must be in ascending order.

APPENDIX - Concluded

(7) In some engineering programs with many tables, it is quite desirable to read in one array of x values that could be used for all lines of a multi-line function or different functions. Even though this situation is not always applicable, the subroutine has been written to handle it: This procedure not only saves much time in preparing tabular data, but also can save many locations previously used when every y coordinate had to have a corresponding x coordinate. Another additional feature that may be useful is the possibility of a multi-line function with no extrapolation above the top line.

Accuracy: A function of the order of interpolation used.

Reference: (a) Nielsen, Kaj L.: Methods in Numerical Analysis. The Macmillan Co., c.1956.

Storage: 555_{8} locations.
Subprograms used: UNS $\quad 40_{8}$ locations.
DISSER $\mathrm{I1O}_{8}$ locations.
LAGRAN $\quad 555_{8}$ locations.

Subroutine date: August 1, 1968.

RE FERENCES

1. Cebeci, Tuncer; Smith, A. M. O.; and Mosinskis, G.: Calculation of Compressible Adiabatic Turbulent Boundary Layers. AIAA Paper No. 69-687, June 1969.
2. Patankar, S. V.; and Spalding, D. B.: Heat and Mass Transfer in Boundary Layers. Morgan-Grampian (London), 1967.
3. Sontowski, J. F.: An Eddy Viscosity Model for Compressible Turbulent Boundary Layers. Tech. Inform. Ser. No. 69SD241, Re-Entry Systems, Gen. Elec. Co., July 1969.
4. Herring, H. James; and Mellor, George L.: A Method of Calculating Compressible Turbulent Boundary Layers. NASA CR-1144, 1968.
5. Anderson, Larry W.; and Kendal, Robert M.: A Nonsimilar Solution for Multicomponent Reacting Laminar and Turbulent Boundary Layer Flows Including Transverse Curvature. AFWL-TR-69-106, U.S. Air Force, Mar. 1970. (Available from DDC as AD 867 904.)
6. Harris, Julius Elmore: Numerical Solution of the Compressible Laminar, Transi-
tional, and Turbulent Boundary Layer Equations With Comparisons to Experimental
Data. Ph. D: Thesis, Virginia Polytech. Inst., May 1970 .
7. Bushnell, Dennis M.; and Beckwith, Ivan E.: Calculation of Nonequilibrium Hypersonic Turbulent Boundary Layers and Comparisons With Experimental Data. AIAA J., vol. 8, no. 8, Aug. 1970, pp. 1462-1469.
8. Hunt, James L.; Bushnell, Dennis M.; and Beckwith, Ivan E.: Finite-Difference Analysis of the Compressible Turbulent Boundary Layer on a Blunt Swept Slab With Leading-Edge Blowing. Analytic Methods in Aircraft Aerodynamics, NASA SP-228, 1970, pp. 417-472.
9. Blottner, F. G.: Nonequilibrium Laminar Boundary-Layer Flow of Ionized Air. AIAA J., vol. 2, no. 11, Nov. 1964, pp. 1921-1927.
10. Beckwith, Ivan E.; and Bushnell, Dennis M. (With appendix C by Carolyn C. Thomas): Detailed Description and Results of a Method for Computing Mean and Fluctuating Quantities in Turbulent Boundary Layers. NASA TN D-4815, 1968.
11. Maise, George; and McDonald, Henry: Mixing Length and Kinematic Eddy Viscosity in a Compressible Boundary Layer. AIAA J., vol. 6, no. 1, Jan. 1968, pp. 73-80.
12. Schlichting, Hermann (J. Kestin, transl.): Boundary-Layer Theory. Sixth ed., McGraw-Hill Book Co., 1968.
13. Lin, C. C., ed.: Turbulent Flows and Heat Transfer. Princeton Univ. Press, 1959.
14. Stainback, P. Calvin (With appendix by P. Calvin Stainback and Kathleen C. Wicker): Effect of Unit Reynolds Number, Nose Bluntness, Angle of Attack, and Roughness on Transition on a 5° Half-Angle Cone at Mach 8. NASA TN D-4961, 1969.
15. Richtmyer, Robert D.: Difference Methods for Initial-Value Problems. Interscience Publ., Inc., 1957.
16. Beckwith, Ivan E.: Recent Advances in Research on Compressible Turbulent Boundary Layers. Analytic Methods in Aircraft Aerodynamics, NASA SP-228, 1970, pp. 355-416.

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AN SPACE ADMINISTRATION
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNLCAL NOTES, Information less brond in scope but nevertheless of importance as a contribution to existing knowledge,

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

 PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.Details on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

[^0]: For sale by the National Technical Information Service, Springfield, Virginia 22151

[^1]: 76 THETAA (I) =(THETA1 (I) +THETAZ (I))/2. I TERATE = ITERATE +1
 IF(ITERATE•EQ.2)GO TO 37

