34 research outputs found

    Design and fabrication requirements for low noise supersonic/hypersonic wind tunnels

    Get PDF
    A schematic diagram of the new proposed Supersonic Low Disturbance Tunnel (SLDT) is shown. Large width two dimensional rapid expansion nozzles guarantee wide quiet test cores that are well suited for testing models at large angle of attack and for swept wings. Hence, this type of nozzle will be operated first in the new proposed large scale SLDT. Test results indicate that the surface finish of pilot nozzles is critical. The local roughness Reynolds number criteria R sub k is approx. = 10 will be used to specify allowable roughness on new pilot nozzles and the new proposed tunnel. Experimental data and calculations for M = 3.0, 3.5, and 5.0 nozzles give N-factors from 6 to 10 for transition caused by Goertler vortices. The use of N is approx. = 9.0 for the Goertler instability predicts quiet test cores in the new M = 3.5 and M = 6.0 axisymmetric long pilot nozzles that are 3 to 4 times longer than observed in the test nozzles to date. The new nozzles utilize a region of radial flow which moves the inflection point far downstream and delays the onset and amplification of the Goertler vortices

    Experimental and theoretical investigation of boundary-layer instability mechanisms on a swept leading edge at Mach 3.5

    Get PDF
    A brief outline of the experimental and theoretical investigation of boundary layer instability mechanisms on a swept leading edge at Mach 3.5 is presented. Transition is affected by wind tunnel noise only when roughness is present. Local bar-R sub * Reynolds number and k/eta sub * are useful correlation parameters for a wide range of free stream Mach numbers. Stability theory is in good agreement with the experimental cross flow vortex wavelength. These conclusions are briefly discussed

    Compressible Laminar Boundary Layer over a Yawed Infinite Cylinder with Heat Transfer and Arbitrary Prandtl Number

    Get PDF
    The equations are presented for the development of the compressible laminar boundary layer over a yawed infinite cylinder. For compressible flow with a pressure gradient the chordwise and spanwise flows are not independent. Using the Stewartson transformation and a linear viscosity-temperature relation yields a set of three simultaneous ordinary differential equations in a form yielding similar solutions. These equations are solved for stagnation-line flow for surface temperatures from zero to twice the free-stream stagnation temperature and for a wide range of yaw angle and free-stream Mach number. The results indicate that the effect of yaw on the heat-transfer coefficient at the stagnation line depends markedly on the free-stream Mach number. An unusual result of the solutions is that for large yaw angles and stream Mach numbers the chordwise velocity within the boundary layer exceeds the local external chordwise velocity, even for a highly cooled wall
    corecore