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TECHNICAL NOTE 2711

THE AERODYNAMIC DESIGN OF HIGH MACH NUMBER NOZZLES
UTTILIZING AXISYMMETRIC FLOW WITH APPLICATION
TO A NOZZLE OF SQUARE TEST SECTION

By Ivan E. Beckwith, Herbert W. Ridyard,
and Nancy Cromer

SUMMARY

A method is given for the design of three-dimensional nozzles uti-
lizing axisymmetric flow. The nozzle can be designed to produce uniform
flow in a test chamber of arbitrary cross section. The method is applied
to obtain the final coordinates of a Mach number 10 nozzle for which a
square test section is specified to reduce the possibility of axisym-
metric imperfections at the wall and to provide for the installation of
schlieren windows. Redial flow is used in a portion of the flow field
to reduce the computation time. The remainder of the flow field is
computed by the method of characteristics, but a simplified method is
used near the axis. Tables which facilitate computation of the radial
flow and the flow near the axis are included. Transition streamlines
determined from the analytic expressions of Kuno Foelsch are compared
with the streamlines obtained from the characteristics net of the Mach
number 10 nozzle. The Foelsch streamlines deviate from the flow-net
streamlines by as much as 12 percent. Similar analytic expressions are
derived from the geometric properties” of the flow. These new expressions
result in transition streamlines with a maximum error of about U4 percent.

INTRODUCTION

Recent research has indicated that three-dimensional supersonic
nozzles may become more desirgble for high Mach number tunnels than
conventional two-dimensional nozzles. For example, in two-dimensional
nozzles designed for test Mach numbers much greater than 5, the flow is
very sensitive to any change of the extremely small dimensions at the
minimum section. The high temperatures required to avoid liquefaction
of the air at these high Mach numbers make the problem of obtaining
dimensional stability of the small slit-like minimum extremely difficult.
(See reference 1.) 1In addition, the excess growth of boundary layer
along the center of the nozzle side plates may also interfere with the
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design flow. A two-stage nozzle discussed in reference 2 avoids the
first difficulty but fails to operate satisfactorily primarily because
of the excess boundary layer. Consideration of three-dimensional nozzles
thus becomes imperative not only for tests of stationary models at the
higher Mach numbers but also for ballistic tests where the projectile
must pass through the minimum of a supersonic nozzle.

A method for the design of three-dimensional nozzles based on axi-
symmetric flow is presented in this paper. Although the flow is axi-
symmetric throughout, the final cross-sectional shape of the nozzle may
be arbitrary. The general concept for the determination of the arbi-
trary cross-sectional shape was applied to the design of en axisymmetric
nozzle at the Langley Aeronautical Laboratory by Mr. Morton Cooper in
1947. The design method presented in this paper is general; however,
as an illustrative example the design of a Mach number 10 nozzle with a
square test section is included. Specification of a square cross-
sectional shapé for the test chember provides for the installation of
conventional schlieren windows. A further advantage of the resulting
noncircular walls is that the possibility of incurring axisymmetric
imperfections at the nozzle wall is reduced. Disturbances originating
from axisymmetric imperfections focus along the axis of the nozzle.

This focusing effect has been known to cause disturbances of considerable
magnitude in the vicinity of the nozzle axis. A theoretical analysis of
the three-dimensional focusing effect is given in reference 3, part II.

LIST OF SYMBOLS

1
g’g EB points in axisymmetric flow field as indicated in figure 1
P’K’ or sketch on p. 10; used as subscripts for conditions at
4 these points .
c local speed of sound
M Mach number
v velocity (with bar to indicate vector quantity)
r distance measured from source point in radial flow field
Tep distance measured from the source point to sonic sphere in
radial flow
x,R,¢ cylindrical coordinates for flow field and nozzle
s distance along a Mach line measured in meridian plane from

the axis of symmetry
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X,¥,2 Cartesian coordinates for nozzle

" Mach angle, sin~t 1/M

7 ratio of specific heats = 1.400 throughout

6 local flow angle

GI ' total expansion angle integreted from the sonic line
in meridian plane

p density

¥ stream function for a compressible axisymmetric flow

i dimensionless stream function

Subscripts:

r radial flow

o isentropic deceleration to zero velocity

NOZZIE DESIGN

For convenience in discussion, the nozzle is divided into four
regions: I, approach; II, throat; III, radial flow; and IV, transition
region, as indicated in figure 1.

Approach.- The specification of parallel flow at the mininum
section facilitates the computation of the supersonic portion of the
flow. Theoretical methods (references 4 and 5) are available for the
design of an approach to give parallel flow; however, it is usually
more conservative to base the approach-section design on existing wind
tunnels which have the desired characteristics. The coordinates for
the approach of the Mach number 10 nozzle were therefore adapted from
those used in the Langley 8-foot high-speed tunnel. In the absence of
a better criterion the square approach section was obtained by using
the same rate of area change with axial distance as in the circular.
approach of the Langley 8-foot high-speed tunnel.

Radial flow.- Construction of the supersonic flow field may start
with either an arbitrary streamline A'C (fig. 1) together with an
assumed flow distribution in the minimum or with the specification of
a flow distribution along the axis of symmetry of the flow. The second
specification was chosen in this investigation primarily to expedite the
computation procedure; however, if this center-line distribution were
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entirely arbitrary, the extent of a Physically possible flow would be
severely limited; that is, Mach lines of the same family would converge
too rapidly or intersect before the computation had proceeded far
enough from the axis to result in a well-proportioned nozzle. This
difficulty is avoided by specifying radial flow along a portion of the
axis such as line BD. If this specification is used, the flow can be
immediately determined for region III from the radial-flow equations
and, in general, a physically possible flow results for region IT.

The use of radial flow in a part of the flow field has the addi-
tional advantage of reducing the computing time, since the flow proper-
ties along the bounding Mach lines BC and CD can be determined exactly
without recourse to the step-by-step method of characteristics. The
equations for three-dimensional radial flow .are based on the assumption
of spherical symmetry. The resulting simplification of the general
equations of motion allows their integration in closed form as indicated
in reference 6 and 7. 1In addition, it is possible to integrate the
characteristic equations as in two-dimensional steady isentropic flow.
For convenience, the three-dimensional radial-flow equations based on
the general steady-flow relations (for example, reference 8) are pre-
sented in the Appendix. Values have been calculated by use of these
radial—-flow equations and the results are tabulated for a range of
parameters from M = 1.0 to M = 11.93 in table I. This change in
M corresponds to a change in expansion angle 61, which is used as the

argument, from 0° to 53.375°.

If point C is at the intersection of the Mach lines bounding the
radial-flow region, as illustrated in figure 1, it will be the inflec-
tion point on the streamline A'CE. This streamline may be taken as
the wall of a nozzle, and the maximum wall angle and the coordinates of
the inflection point can then be determined immediately from the local
flow angle at C. The value of the flow angle at C is entirely arbi-
trary; however, a reasonable value can be determined as a compromise
between the requirements for over-all nozzle length and meximum rate of
expansion. For the Mach number 10 nozzle, the flow angle at C was
taken as 16°.

Throat.- The flow in region II (the throat) is computed by the
method of characteristics with the initial conditions of a known flow
distribution along line BC from radial flow and .an arbitrary distribu-
tion along line AB as shown in figure 1. The Mach number 10 nozzle
computation was simplified by teking the arbitrary distribution as a
straight line with a slope given by the radial flow at point B. In
general, this assumption is incompatible with a straight sonic line;

indeed, a necessary condition for a straight sonic line 1is %M.M=l = 0.

However, for high Mach number nozzles, this simplifying assumption
results in a satisfactory solution because of the small dimensions of the
minimum section. The characteristics net for region II is shown in fig-
ure 2 with a streamline through point C included.
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The characteristic equations may be used in a form where the more
usual velocity parameter, such as that used in reference 9, is replaced
by the Mach number by using the differential relation between Mach
number and velocity. Sample calculations indicate that the use of this
parameter for the high Mach number range reduces the numerical error
inherent in the method of characteristics. The particular parameter
used makes little difference at the lower Mach numbers.

When the Mach number is used as a parameter, the characteristic
equations are ‘

a9 T VM2 - 1 am t 1

t dx =0 (1)
M(]\.+-7—é—ilv12) R(VMg-lcotG-'Fl)
and
dR = tan(6 t p) dax (2)

where the upper signs correspond to the left Mach lines and the lower
signs to the right Mach lines. The distinction between these Mach lines
is illustrated in figure 2. The last term on the left-hand side of
equation (1) becomes indeterminate at the axis of symmetry, that is,
as R awpd 6 approach zero. If the limit of this term is taken

" (reference 9) as R~—>0, equation (1) becomes

- 2-
as ¥ ——1 _amtl /-1 a—M) ax =0 (3)
M(l+7éllv12> M(1+L1M2> 3 JR=0
2
QM , ‘ |
Thus, if |=— is specified along the center line, equation (3) may
\%% /R0

be used in conjunction with equations (1) and (2) to compute the flow.

An alternative method of computing the flow in the vicinity of the
axis can be used. This method consists in reducing equation (3)-by
dividing this equation by dx and using a relation which follows from
the general expression for the total derivative of M with respect to x
along a Mach line; that is, dM/dx = oM/dx + (M/OR)(dR/dx). If this
total derivative is evaluated at R = O, there results the required rela-
tion, aM/dx = (M/3x)g_o, since in exisymmetric isentropic flow
(BM/BR)R=O = 0. (See reference 3, part I.) v
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Hence the characteristic equations evaluated at the axis become

VM2 - 1 aM = 0 (L)

M(; + 1= M?)
>

ol
D
+1

|

Then equations (2) and (U4) are used to compute the flow in the immediate
vicinity of the axis; that is, at points 2,1; 3,2; b,3; . . ., in fig-
ure 2. Equation (L4) is the differential form of the corresponding equa-
tion given by Goldstein as a finite-difference equation (reference 3,
part I, page 218).

A simplification is possible since equation (4) is of the same
form as the corresponding equation for radial flow. (See Appendix.)
Hence, the integral of equation (L4) or the corresponding tabulated
results (table I) can be used, in effect, to determine the hodograph in
the region of the axis for any axisymmetric, isentropic flow. The
method should be sufficiently accurate even at a small distance from
the axis if OM/OR is small.

The row of points adjacent to the axis in region II (figure 2) have
been computed by both equations (3) and (4) for the Mach number. 10 nozzle.
The results of this computation are compared in table II. The differences
between the two methods are small for all the points and tend to decrease
as point 2,1 is approached. The remainder of the flow field in region IT
was then computed with equations (1) and (2) for both methods at the
axis. A relative comparison of the effect of the two methods on the rest
of the flow field may then be obtained by comparing corresponding stream-
lines through the two flow fields. If these streamlines are determined
by the flow-angle method (described in a subsequent section entitled
"Streamlines") starting from point C, for example, and-working toward A',
accumlative errors arise which prevent the streamlines from passing
through the theoretically exact point A'., In this connection it is noted
that the R coordinate of point A' can be determined exactly from the
mass-flow requirement at the minimum (assuming parallel flow at M = 1
along a line through A' normal to the axis); whereas the x coordinate
of A' depends on the assumption made for the flow distribution along the
line AB. Thus, if the streamlines in both cases are started at the fixed
initial point C, the error in R/rCr at x =x, was 0.96 percent for

the first method (equations (1), (2), and (3)); whereas for the alternate
method (equations (1), (2), and the integral of equation -(4)), the error
was 1.02 percent of the known radius at x = Xp .
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Transition.- The flow in region IV (transition region) can be com-
puted by equations (1) and (2) from the initial conditions of a radial
distribution along the Mach line CD and parallel and uniform flow along
the Mach line DE. The characteristics net for region IV in the Mach
number 10 nozzle is shown in figure 3 with a streamline through point C
included. .

Mesh size.- The axisymmetric flow fields in regions IT and IV
(fig. 1) were computed for the Mach number 10 nozzle by using the method
of finite differences applied to equations (1) to (3). The flow for
region II was computed with seven steps along line AB and eight steps
along line BC as shown in figure 2; the nearest point to the sonic line
had a Mach number of 1.019928. Region IV was computed with 2° steps
in 61 along CD and 10 uniformly spaced steps along DE as shown in fig-

ure 3. Three iterations were made for each point according to the pro-
cedure of reference 9 so that the parameters were gllowed to converge
to nearly constant values. Altogether, this computation totaled

T4 points and was performed on an electrically operated desk-type
computing machine at an average rate of 3 hours per point for a total
of approximately 220 hours of computing time. Application of the
simplified method (integral of equation (%)) at the axis would reduce
the total computing time to about 200 hours. Without the specification
of radial flow along BD, 21 more points would have been required, and
the total computing time would have been increased to about 290 hours.

When a streamline through this flow net was determined, apprecisble
errors resulted because of the size of the steps chosen for the compu-
tation. For this reason, computations were made with a finer flow net
with steps approximately 1/3 the size of those in the coarse net -
previously described and requiring a total of 573 points. The Bell
Telephone Laboratories X-66T4k relay computer was used to perform this
task. The available Bell computing tapes utilized the characteristic
equations in the form given in reference 10 and mede only two iterations
for each point. The Bell computer performed the computation at a rate
of 0.3 hour per point for a total of 172 hours.

' Sample computations have demonstrated that the values of the flow
paremeters will converge in the iteration process more rapidly if equa-
tions (1) and (2) and the iteration procedure of reference 9 are used
instead of the equations and iteration procedure of reference 10. How-
ever, g comparison has been made of the accuracy of the flow nets as
determined on the desk computer and the Bell computer. The results of
this comparison are given in table III, in which the ordinates of the
streamlines determined by the flow-angle method are compared with the
theoretically exact values at points C and A'. The errors result from
the approximations inherent in the finite-step method employed in
computing the flow net and are some function of the size of the steps.
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Since the results obtained with the Bell computer were more
accurate, in spite of the fewer numbér of iterations made and the slower
convergence of the iteration procedure, the advantage of maintaining a
fine net is obvious. For these calculations, the increase in accuracy
is of the same order as the decrease in mesh size,

Streamlines.- After the flow field has been computed the stream-
lines may be obtained either from the local flow angles or from the
stream function.

Stokes' stream function V¥ (reference 8) for an axisymmetric
compressible flow can be defined by the differential relation

%% = pRe ' (5)

where ds is the differential distance along a Mach line in the meridian

Plane. Introducing a -dimensionless stream function ¥ = g into

Ter Poo

/8 5
equation (5) and integrating from the axis (——— = O) to —— gives the
’ Ter cr

value of the stream function at rs y

cr

1 +

f/rcr R l‘ d(s) - (6)
( ¥ ; 1 M2)(7+l)/2(7-1) Ter

where the isentropic flow relations for p/p0 and c/c have been
used. Within the radial flow region BCD (fig. 1), V can be defined
by the equation

avy ‘
E = DVI2 sin 0 (7)

Integrating along the arc and dividing by rcrzpocO yields

7+1
= (__2_3)2:7-1) (1 - cos 8) (8)
7 +
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since p, V, and r are constants along the arc of radius r. Now

the value of ¥ can be found for a given value of 6 along the Mach
lines CD or BC from equation (8). Then, since ¥ is constant along a
streamline, graphical integration of equation (6) along the Mach lines

in region II or IV up to the desired value of V¥ 1dcates the remaining -
points for this streamline. In practice, the most accurate procedure

is to obtain a value of T for each point in the Mach net (that is,
intersection points of right-and left Mach lines) by integrating equa-
tion (6) along the left Mach lines. Any desired value of ¥ and the
corresponding x and R coordinates are then easily obtained by linear
interpolation between the points. Integration along the left Mach lines
is more accurate in region IV than integration along the right lines
because of the more gradual change in flow variables along the left lines.

The streamlines may also be obtained from the flow angles by
extending the streamlines directly through the R - x plane by a step-
by-step iteration procedure. This iteration procedure consists of -
extending the tangent to a streamline from a known point in the flow,
such as a point on the Mach lines BC, CD, or DE, until another Mach
line is intersected. As an example, consider the streamline through
point E, in figure 3. By linear interpolation between the known values
of the flow angle at points 1 and 3, a value (say 6p) is obtained for °
this first intersection of the tangent line and the Mach line. The mean
of 8, and the initial value Or 1s then used as the slope for a new

line through the initial point. The intersection of this line with the
Mach line 1-3 gives a new flow angle 6o'. This process is repeated

until the change in 6p for successive iterations is no longer signi-
ficant, whereupon the entire procedure is repeated in the adjoining mesh.

The flow-angle method was not used for the final computation of the
streamlines of the Mach number 10 nozzle because of the accumulative
errors at the end points A' and C. Nevertheless, the flow-angle method
was found useful for comparing the effect of mesh size on the accuracy of
the flow field. The stream-function method results in streamlines with
the exact coordinates at points A', C, and D. Furthermore, this method
requires less time than the flow-angle method, especially if several
streamlines are required as for a nozzle with a square test section.

For the Mach number 10 nozzle small local irregularities in the
streamlines were eliminated by integrating curves of +tan 6 plotted
against x where 6 was obtained from the stream-function method,

Foelsch (reference T) has given analytic expressions for the
coordinates of the transition streamlines in a three-dimensional nozzle.

e = e 7 i e e e i e, ARt o A 1 o gttt e % ot e | T e e
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Foelsch's equations may be derived under somewhat more restrictive
assumptions from equations (6) and (8) given in this paper. The
points in the flow field are identified in the following sketch:

= |
Ter Mach lines boundin
c es bounding
- D /
radia\l ﬂow‘\\ - —Transition streamline
N \ z E
N
S ~~TFinal Mach line
-~
Z/e =
0 B D T Ter
Thus, for any left Mach line PK in the transition region:
. R .
T
L-% =f - d(rs ) (9)
P y o1 A (#1)/2(y-1) Yer ~
1+ M?
2

from equation (6). Then, by use of the relation

= o)

8
d( )= =
r .
, cr!  sin (6 + p) cos 8 + \/M2 - 1sin 6

and equation (8), equation (9) can be written as

cos Bp - cos B =
poosto= |
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where the integration is along the left Mach Iine PK. Making the
assumption that M and 6 are constant along the left Mach lines and
equal to thelr values at P and using the radiasl flow equations for
rp/Tcy and Rp/rer gives, for equation (10),

1/2
r
EK_ - E sin® 6p + 2(cos 6p - cos GC)Q/MPE - 1 sin 6p + cos QP)
Ter To
r
(11)

which is the same result as that given by Foelsch (equation (17) of
reference 7). The x-coordinate of point K is then obtained by integra-

das

cr ,

tion of the relation d—— = along the left Mach line from
Ter tan(6 + u)

P to K on the assumption that 6 = 6p and M = Mp as before. The
result is

X in 6
—_— - — g
pe P rp
K _Zcr Ter + —— cos 6p (12)
Ter tan (6p + pp)  Ter
since -
X r
-—P_. = ~—— COS8 eP
Ter cr
and
R r
P
— = ——gin @
T B P
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An approximation which is more accurate for the Mach number 10
nozzle than that given by Foelsch (reference T or equations (11) ana (12)
herein) for the transition streamlines can be obtained from a considera-
tion of the geometric properties of the flow in region IV (see sketch
on p. 10). Thus, if PK is assummed to be a straight line, (that is,
M=M, and 0 = 6, along PX), as was done in the derivation of

equations (11) and (12), the coordinates of point K are

X rp As )
X = —— COS8 9P+—I—(-cos (9P+up)
Ter Ter Ter
> (13)
rp Ja¥:]
BE_ = —— sin 8p + =K sin (QP + QE)
Ter  Ter Ter
~t

where AsK is the length of the Mach line PK. To obtain an expression
for As, first consider its value for the final Mach cone DE. Thus,

’

sin My = E% = (14)

g

If the flow were allowed to expand from point C as an undisturbed
radial flow until it reached the spherical segment DD', the density and
velocity would be the same at the surface of this spherical segment as
it is along the final Mach cone DE. Therefore, conservation of mass
requires that the surface area of the spherical segment DD' be equal to
the plane cross-sectional area at E; that is,

7}
Rp = 2 _c
B rp sin 5

Then, from equation (14),
0

Asp = 2Mp rp sin Eg

The same reasoning may bé applied to obtain an approximate relation
between the area of the spherical segment formed by rotation of arc PP
about the radial line OP and the area n(KK')2, where the line KK' is
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normal to the radial streamline extended through point P. Thus,
assuming unliform flow along PK gives

6c - Op

5 (15)

= 2Mprp sin

This relation for Askg can be obtained only by assuming that the line

OP is, in effect, the axis of a new nozzle with a final Mach cone of,
half angle pp. This assumption is compatible with the supposition
that the flow along PK is parallel and uniform. Substitution of equa-
tion (15) into equations (13) results in

T e |
— = ——— |[cos 6p + 2Mp sin — cos (GP + ué)

) B L (16)

]
R 6 - 6 .
—l{— '—rP—- sin eP + QMP sin —Q—E—B (QP + “-P)

~
In equations (16) the values of rp, 6p, and 6z depend on the radial

flow in region III (fig. 1). As discussed previously this flow is
determined by the specification of the final expansion angle QID and

Mach number at point D.

. The transition streamline through point C has been computed for the
Mach number 10 nozzle by Foelsch's method (equations (11) and (12)) and
the geometric method given by equations (16). The results of the two
computations are compared in table IV to the streamline coordinates
obtained by the method of characteristics with the fine mesh. A com- .
Parison between the streamline coordinates from the coarse and fine mesh
is also included. The maximum error from Foelsch's method is about
12 percent as compared to an error of 4 percent by the geometric method.
Although both methods result in significant error for this nozzle, even
in comparison with the values obtained by the characteristic method for
the . coarse net, the possibility is that both methods may be more accurate
at lower Mach numbers where smaller values of 6¢ can be used.

Cross-section contours.- The nozzle may be designed for a test
section of arbitrary cross-sectional shape. Thus, the distance from the
axis to a point on an arbitrary closed curve in a cross-sectional plane
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of the final parallel and uniform flow region is the R ordinate of the
starting point of a streamline which will be traced through the flow
fieild to the minimum. Because of the symmetry of the flow field all
streamlines bounding the nozzle can be designed in a single meridian
plane. For the Mach number 10 nozzle a square cross section was
specified in the uniform-flow region. Some of the resulting nozzle
cross-section contours are shown in figure 4. The cross section at the
minimum is square since the flow at this station is assumed to be
parallel and uniform. The maximum deviation of the other contours from
a square is approximately O0.3. Nondimensional coordinates for the
Mach number 10 nozzle are presented in table V. The geometrical minimum

is located at Xp = 0.5043 Troy for reasons noted previously.

CONCLUDING REMARKS

A method is given for the design of three-dimensional nozzles
utilizing axisymmetric flow. The nozzle can be designed to produce
parallel and uniform flow in a test chamber of arbitrary cross section.
Design calculations are made for a Mach number 10 nozzle in which a
8quare test section is specified to reduce the possibility of axisym-
metric imperfections at the wall and to provide for the installation of
schlieren windows. The specification of radial flow in a portion of the
flow field in general assures a physically possible solution &and results
in an appreciable reduction of computing time. The flow in the immediate
vicinity of the axis of symmetry is computed by a simplified but suffi-
ciently accurate method whereby the hodograph of any isentropic axisym-
metric flow is determined. The remainder of the supersonic flow field
is constructed by the method of characteristics. The effect of mesh
size on the accuracy of the calculation is obtained by comparing stream-
lines through two flow fields computed with steps of different size.

This comparison indicates for the Mach number 10 nozzle computation of
this paper that the relative increase in accuracy is of the same order
as the decrease in mesh size. Of the two methods considered for
determining the final streamlines from the flow net, the stream-function
method proved to be the most convenient and accurate. Foelsch's analytic
expressions for the transition streamlines give coordinates which deviate
from the flow net streamlines for the Mach number 10 nozzle by as much

as 12 percent. Similar analytic expressions derived in this paper from
the geometric properties of the flow result in transition streamline
coordinates with a maximum error of about 4 percent.

Langley Aeronautical Iaborafory
National Advisory Committee for Aeronautics
Langley Field, Va., April 1, 1952
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APPENDIX
THREE-DIMENSIONAL RADIAL FLOW

For the steady flow of a gas in the absence of viscosity and heat
transfer, there is obtained (reference 8, p. 553)

V.V = %-6'- e (A1)

if the flow along each streamline is assumed adiabatic.

If the fluid moves radislly and the velocity and speed of sound
are functions of r only (where r 1s the distance from a fixed
point), equation (Al) becomes

V.2\av v
1-—= Zi2-ZX=0
c dr r

or, since V,. 1s the only velocity component
- ) Y_o

(1 M)dr+2r—0 (42)

From the adiabatic energy equation the relation between Mach number and

veloclity is

av 1 aM

a a (43)
7 1+Z;1M2M
Then, combining equation (A2) and (A3) gives
2 .
r_1_M -1 (k)
T2y, oLy M

e e
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Integrating equation (AY) between the limits r =r to r and

M=1 to M gives

cr

f y+1 |3/2 |
_ 2(7-1)
[;fl(l“LyalMQ)_l ’
r_o- - | | (25)
Ter
_ J

The characteristic equations are now easily determined (see the
following sketch):
Left Mach line

Iy
§ ar </ Kl
A L3 ]
< v
()
0 Right Mach line
” ——p—
For the left Mach line \
= = tan(0 + ) (46)
and
dr ’ .
=g = cot 1 (A7)

Combining equations (A4) and (A7) gives

@ =3 W - 1 & | (48)

since cot p = w2 - 1. Integration of equation (A8) from € =0 to 6Of
and M=1 to M gives
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1/2 ’
-—iy_.-*-_]'. -17-12'_ ..l -1-]—- .
61 = 5 || 5 tan [;_+ (2 - 1) % cosl & (49)

Similarly, for the right Mach line,

dR

and

1/2
Lfr+deonl|2 =202 - 2)| +1costl (a11)
2y -1 y + 1 2 M

Equations (A5) and (A9) have been computed and tabulated for 61 = 0°

to 53.375° in intervals of 0.125° in table. I. Equation.(A9) is used
since the conventional definition of the total expansion angle is such
that a positive increase in 'M Tesults in a positive Increase in 07

regardless of whether the Mach line is of the right or. left family.

The Mach lines BC and CD (fig. 1) may now be constructed as
follows: The final Mach number is taken as Mp = 10. 068 which gives

eID = 51.25° from table I. The flow variables M and r/rep Tor
any point on line €D are tabulated with the argument 67 =_GID -0,

where the local flow angle 6 is the parameter. Thus, if 6 = 4°,
= 47.25° then from table I, M = 7.733272 and r/rcy = 12.77156.

From this value of r/r., and the given value of 6 the coordinates
of the point can be obtained since

o= L cos 6 = 12.7h0k
cr Ter

il

R T
— = —— 5in 6
Tcr Ter

0.8909 .

For this particular nozzle, the flow angle at point C was taken as 16O
vhich gives 61, = 35. 25° and o1y = 19- 25° since 6p =.0°.

EX— = 'ta.n(G - l-l} (AlO) '
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TARIE I.- THREE DIMEISIONAL RADIAL FLOW VARLABLES - Concluded
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TABIE II.- COMPARISON OF FLOW PARAMETERS NEAR AXIS IN MACH

NUMBER 10 NOZZIE AS COMPUTED BY EQUATIONS (3) AND (k)

(lffggtg) Method x/rcr R/rcr M (dgg)
7,6 Eg. (3) | 0.55477 | 0.13186 | 1.08526 | 0.5889
Eq. (&) .55436 .12730 1.09874 .59375
Difference .00041 .00456 -.01348 -.00485
6,5 Eq. (3) 67197 .08208 | 1.23156 | 1.003k
Eq. (4) L6719k .08153 1.23732 1.0000
Difference .00003 .00055 -.00576 .003h
5,4 Eq. (3) .82688 .09904 | 1.4434% | 2,0000
Eq. (4) .82686 .09849 1.hk5212 2.0000
o Difference .00002 .00055 -.00868 0 :
4,3 Eg. (3) 1.0352 .07293 | 1.71835 | 2.0000
Eq. (4) 1.0352 07277 1.72354 2,0000
Difference 0 .00016 -.00519 0
3,2 Eq. (3) 1,246k .06243 | 2.00013 | 2.0000
Eq. (h4) 1.246h .06234 | 2.00436 2.0000
Difference 0 .00009 -.00423 0
2,1 Eq. (3) 1.4737 ".05731 2. 30450 2.0000
Eq. (k) 1.4737 L0572k [ 2.30868 | 2.0000
Difference 0 00007 -.00418 | o

)
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TABLE TIT.- COMPARISON OF ACCURACY OF THE FIOW

NETS IN MACH NUMBER 10 NOZZIE FOR ¢ = 15°

’ Error
Point Method X/T oy R/Tep MR/Tor (percent)
Transition streamline
£xact 3.7202 1.0667
C Desk computer 3.7202 1.0507 -0.0160 -1.50
Bell computer 3.7202 1.0621 - .00k46 -.h3
Throat streamline
Exact 0.50434 0.27835
Al Desk computer .50434 .28103 0.00268 0.96
Bell computer 50434 .27946 .00111 2, 4o
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TABLE IV.- COMPARISON OF STREAMLINE COORDINATES IN MACH

NUMBER 10 NOZZLE FOR @ = 45°

‘{ R/rcr
Characteristics method | Geometric method | Foelsch method
x/rcr (eq. 16)
Coarse net
Fine |y .. | Error Value (pgiiiit) Value (pﬁizZ;t)
net (percent) ) '
3.7202 | 1.067 | 1L.067 0 1.067 0 1.067 0
7.5 2,016 | 2.007 -5 |1.975 | -2.03 |1.919| -k.81
14,5 3.280 | 3.26k -.k9 3.151 -3.93 2.956 -9.88
26.0 h62h | k601 | -.50 k. 431 k.17 4,067 | -12.05
k2,0 5.706 | 5.6Th -.56. [5.523 -3.21 5.069 | -11.16
57.0 6.242 | 6.197 -T2 |[6.121 -1.94 | 5.70% -8.62
73.5 | 6.498 | 6.469 |  -.45 | 6457 | -.63 |6.203| -h.5k
89.1219 | 6.548 | 6.548 0 6.548 0 6.548 0
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Figure 1.- Schematic representation of the nozzle flow fields showing
the Mach number wvariation with distance along the center line for o
the Mach number 10 nozzle. ‘ ' ~
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1/Ter
streamline included.

Right Mach lines

Tpft Mach lines

Figure 2.- Mech net in region ITI for the Mech number 10 nozzle with a

.51
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Figure 3.~ Mach net in regicn IV for the Mach number 10 nozzle with a
streamline included.
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Figure 4.~ Typical cross-sectional contours for one quadrant of the

Mach number 10 nozzle.
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