5,157 research outputs found

    Quenched chirality in RbNiCl3_3

    Full text link
    The critical behaviour of stacked-triangular antiferromagnets has been intensely studied since Kawamura predicted new universality classes for triangular and helical antiferromagnets. The new universality classes are linked to an additional discrete degree of freedom, chirality, which is not present on rectangular lattices, nor in ferromagnets. However, the theoretical as well as experimental situation is discussed controversially, and generic scaling without universality has been proposed as an alternative scenario. Here we present a careful investigation of the zero-field critical behaviour of RbNiCl3_3, a stacked-triangular Heisenberg antiferromagnet with very small Ising anisotropy. From linear birefringence experiments we determine the specific heat exponent α\alpha as well as the critical amplitude ratio A+/A−A^+/A^-. Our high-resolution measurements point to a single second order phase transition with standard Heisenberg critical behaviour, contrary to all theoretical predictions. From a supplementary neutron diffraction study we can exclude a structural phase transition at TN_N. We discuss our results in the context of other available experimental results on RbNiCl3_3 and related compounds. We arrive at a simple intuitive explanation which may be relevant for other discrepancies observed in the critical behaviour of stacked-triangular antiferromagnets. In RbNiCl3_3 the ordering of the chirality is suppressed by strong spin fluctuations, yielding to a different phase diagram, as compared to e.g.\@ CsNiCl3_3, where the Ising anisotropy prevents these fluctuations

    Long-term variability of AGN at hard X-rays

    Get PDF
    Variability at all observed wavelengths is a distinctive property of AGN. Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Swift/BAT offers the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. We study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80% of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10% larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies >~ 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).Comment: 17 pages, 11 figures, accepted for publication in A&

    Genauigkeit eines bildfreien Navigationssystemes fĂŒr die HĂŒftpfannenimplantation – eine anatomische Studie

    Get PDF
    The position of the acetabular cup is of decisive importance for. the function of a total hip replacement (THR). Using the conventional surgical technique, correct placement of the cup often fails due to a lack of information about pelvic tilt. With CT-based and fluoroscopically-assisted navigation procedures the accuracy of implantation has been significantly improved. However, additional radiation exposure, high cost and the increased time requirement have hampered the acceptance of these techniques. The present anatomical study evaluates the accuracy of an alternative procedure-image-free navigation. This method requires little extra effort, does not substantially delay surgery, and needs no additional imaging. Press-fit cups were implanted in 10 human cadaveric hips with the help of the image-free navigation system, and the position of the cups was checked intraoperatively with a CT-based navigation system and postoperatively by computed tomography. All cups were implanted within the targeted safe zone with an average inclination of 44degrees (range 40degrees-48degrees, SABW 2.7degrees) and an average anteversion of 18degrees (range 12-24degrees, SABW 4.1degrees). Analysis of accuracy of the image-free navigation software revealed only a small, clinically tolerable deviation in cup anteversion and cup inclination in comparison with the CT-based navigation system and the post operative CT scans. The evaluated image-free navigation system appears to be a practicable and reliable alternative to the computer-assisted implantation of acetabular cups in total hip arthroplasty
    • 

    corecore