5,157 research outputs found
Quenched chirality in RbNiCl
The critical behaviour of stacked-triangular antiferromagnets has been
intensely studied since Kawamura predicted new universality classes for
triangular and helical antiferromagnets. The new universality classes are
linked to an additional discrete degree of freedom, chirality, which is not
present on rectangular lattices, nor in ferromagnets. However, the theoretical
as well as experimental situation is discussed controversially, and generic
scaling without universality has been proposed as an alternative scenario. Here
we present a careful investigation of the zero-field critical behaviour of
RbNiCl, a stacked-triangular Heisenberg antiferromagnet with very small
Ising anisotropy. From linear birefringence experiments we determine the
specific heat exponent as well as the critical amplitude ratio
. Our high-resolution measurements point to a single second order
phase transition with standard Heisenberg critical behaviour, contrary to all
theoretical predictions. From a supplementary neutron diffraction study we can
exclude a structural phase transition at T. We discuss our results in the
context of other available experimental results on RbNiCl and related
compounds. We arrive at a simple intuitive explanation which may be relevant
for other discrepancies observed in the critical behaviour of
stacked-triangular antiferromagnets. In RbNiCl the ordering of the
chirality is suppressed by strong spin fluctuations, yielding to a different
phase diagram, as compared to e.g.\@ CsNiCl, where the Ising anisotropy
prevents these fluctuations
Water rights, conflict and policy: Proceedings of a workshop held in Kathmandu, Nepal, January 22-24, 1996
IrrigationIrrigation managementWater rightsWater lawConflictFarmers' associations
Long-term variability of AGN at hard X-rays
Variability at all observed wavelengths is a distinctive property of AGN.
Hard X-rays provide us with a view of the innermost regions of AGN, mostly
unbiased by absorption along the line of sight. Swift/BAT offers the unique
opportunity to follow, on time scales of days to years and with a regular
sampling, the 14-195 keV emission of the largest AGN sample available up to
date for this kind of investigation. We study the amplitude of the variations,
and their dependence on sub-class and on energy, for a sample of 110 radio
quiet and radio loud AGN selected from the BAT 58-month survey. About 80% of
the AGN in the sample are found to exhibit significant variability on months to
years time scales, radio loud sources being the most variable. The amplitude of
the variations and their energy dependence are incompatible with variability
being driven at hard X-rays by changes of the absorption column density. In
general, the variations in the 14-24 and 35-100 keV bands are well correlated,
suggesting a common origin of the variability across the BAT energy band.
However, radio quiet AGN display on average 10% larger variations at 14-24 keV
than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert
galaxies with detectable spectral variability on month time scale. In addition,
sources with harder spectra are found to be more variable than softer ones.
These properties are generally consistent with a variable power law continuum,
in flux and shape, pivoting at energies >~ 50 keV, to which a constant
reflection component is superposed. When the same time scales are considered,
the timing properties of AGN at hard X-rays are comparable to those at lower
energies, with at least some of the differences possibly ascribable to
components contributing differently in the two energy domains (e.g.,
reflection, absorption).Comment: 17 pages, 11 figures, accepted for publication in A&
Genauigkeit eines bildfreien Navigationssystemes fĂŒr die HĂŒftpfannenimplantation â eine anatomische Studie
The position of the acetabular cup is of decisive importance for. the function of a total hip replacement (THR). Using the conventional surgical technique, correct placement of the cup often fails due to a lack of information about pelvic tilt. With CT-based and fluoroscopically-assisted navigation procedures the accuracy of implantation has been significantly improved. However, additional radiation exposure, high cost and the increased time requirement have hampered the acceptance of these techniques. The present anatomical study evaluates the accuracy of an alternative procedure-image-free navigation. This method requires little extra effort, does not substantially delay surgery, and needs no additional imaging. Press-fit cups were implanted in 10 human cadaveric hips with the help of the image-free navigation system, and the position of the cups was checked intraoperatively with a CT-based navigation system and postoperatively by computed tomography. All cups were implanted within the targeted safe zone with an average inclination of 44degrees (range 40degrees-48degrees, SABW 2.7degrees) and an average anteversion of 18degrees (range 12-24degrees, SABW 4.1degrees). Analysis of accuracy of the image-free navigation software revealed only a small, clinically tolerable deviation in cup anteversion and cup inclination in comparison with the CT-based navigation system and the post operative CT scans. The evaluated image-free navigation system appears to be a practicable and reliable alternative to the computer-assisted implantation of acetabular cups in total hip arthroplasty
- âŠ