124 research outputs found

    The evolutionary significance of developmental plasticity in the communication system of Neoconocephalus triops (Orthoptera: tettigoniidae)

    Get PDF
    Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 24, 2010).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Thesis advisor: Dr. Johannes Schul.Vita.Ph.D. University of Missouri--Columbia 2008.The katydid Neoconocephalus triops is a tropical species that extended its distribution range to North America. In North America, males display developmental plasticity in mating calls between reproductive generations: the winter call differs from the summer call in both double-pulse rate and call structure. In the tropics, males express only the summer call. We found that tropical N. triops have the capacity to express the winter call, but tropical conditions do not induce its expression. Female N. triops have strong preferences for double-pulse rate, but are not selective for call structure, i.e. females of most populations are attracted to both the summer and winter call structure. The temperature dependency of female preference for double-pulse rate in the Florida population was significantly steeper than those of tropical populations or other Neoconocephalus species. This steeper temperature dependency of female preference resulted in an overlap of the preference with the summer call at high temperatures, and the winter call at low temperatures, facilitating communication in both seasons. Thus, female preference evolved in response to male call plasticity in the Florida population of N. triops.Includes bibliographical reference

    Males and females evolve riskier traits in populations with eavesdropping parasitoids

    Get PDF
    Predation and/or parasitism often limits the evolution of conspicuous male traits and female preferences because conspicuous traits can attract predators or parasites and it is costly for females to associate with males that attract predators or parasites. As a result, males and females in high-risk populations are expected to evolve safer mating behaviors compared to individuals from low-risk populations. We tested this antagonistic selection hypothesis in the field cricket Gryllus lineaticeps. Males produce chirped songs, and both female crickets and the eavesdropping parasitoid fly Ormia ochracea prefer faster chirp rates. The flies attack the field crickets late in the breeding season and parasitized crickets die. We used a common garden rearing design to test for evolved differences in songs and preferences between high- and low-risk populations. In contrast to predictions of the antagonistic selection hypothesis, males from high-risk populations produced faster (riskier) chirp rates and females preferred faster chirps. We suggest that late-season parasitism selects for increased investment in reproductive traits to maximize reproduction before the advent of parasitoid activity (“late-season parasitism hypothesis”), which would at least explain riskier female preferences and potentially riskier male songs in the high-risk populations. Predation and parasitism may thus have diverse and unexpected effects on the evolution of reproductive behavior, depending upon the temporal pattern of predator- or parasite-induced mortality. Significance statement Mating signals are typically conspicuous and not only attract partners but also predators and parasites. Even the silent mating partner may experience predation or parasitism by associating with the signaler. Under these circumstances, it is commonly assumed that natural and sexual selection act in opposite directions, effectively limiting the evolution of conspicuous signals and preferences. We demonstrate that an eavesdropping parasitic fly caused the evolution of preferences, and potentially songs, in a field cricket in the opposite, more conspicuous, direction than predicted by antagonistic selection. We argue that the temporal pattern of parasitism in relation to the reproductive season likely causes this unexpected evolutionary pattern. We propose the late-season parasitism hypothesis as an alternative to the antagonistic selection hypothesis, which might better explain more conspicuous mating trait values in other species that experience seasonal predation or parasitism

    Males and females evolve riskier traits in populations with eavesdropping parasitoids

    Get PDF
    Predation and/or parasitism often limits the evolution of conspicuous male traits and female preferences because conspicuous traits can attract predators or parasites and it is costly for females to associate with males that attract predators or parasites. As a result, males and females in high-risk populations are expected to evolve safer mating behaviors compared to individuals from low-risk populations. We tested this antagonistic selection hypothesis in the field cricket Gryllus lineaticeps. Males produce chirped songs, and both female crickets and the eavesdropping parasitoid fly Ormia ochracea prefer faster chirp rates. The flies attack the field crickets late in the breeding season and parasitized crickets die. We used a common garden rearing design to test for evolved differences in songs and preferences between high- and low-risk populations. In contrast to predictions of the antagonistic selection hypothesis, males from high-risk populations produced faster (riskier) chirp rates and females preferred faster chirps. We suggest that late-season parasitism selects for increased investment in reproductive traits to maximize reproduction before the advent of parasitoid activity (“late-season parasitism hypothesis”), which would at least explain riskier female preferences and potentially riskier male songs in the high-risk populations. Predation and parasitism may thus have diverse and unexpected effects on the evolution of reproductive behavior, depending upon the temporal pattern of predator- or parasite-induced mortality. Significance statement Mating signals are typically conspicuous and not only attract partners but also predators and parasites. Even the silent mating partner may experience predation or parasitism by associating with the signaler. Under these circumstances, it is commonly assumed that natural and sexual selection act in opposite directions, effectively limiting the evolution of conspicuous signals and preferences. We demonstrate that an eavesdropping parasitic fly caused the evolution of preferences, and potentially songs, in a field cricket in the opposite, more conspicuous, direction than predicted by antagonistic selection. We argue that the temporal pattern of parasitism in relation to the reproductive season likely causes this unexpected evolutionary pattern. We propose the late-season parasitism hypothesis as an alternative to the antagonistic selection hypothesis, which might better explain more conspicuous mating trait values in other species that experience seasonal predation or parasitism

    Phenotypic plasticity of male calls in two populations of the katydid Neoconocephalus triops (Insecta: Tettigoniidae)

    Get PDF
    The ability to respond to environmental changes plays a crucial role for coping with environmental stressors related to climate change. Substantial changes in environmental conditions can overcome developmental homeostasis, exposing cryptic genetic variation. The katydid Neoconocephalus triops is a tropical species that extended its range to the more seasonal environment of North America where it has two reproductive generations per year. The harsher winter conditions required adults to diapause which resulted in substantially different mating calls of the diapausing winter animals compared to the non-overwintering summer animals in northern Florida. The summer call corresponds to that of tropical populations, whereas the winter call represents the alternative call phenotype. We quantified call plasticity in a tropical (Puerto Rico) and a temperate population of N. triops (Florida) that differ in experiencing winter conditions in their geographic regions. We hypothesized that the plastic call traits, i.e., double-pulse rate and call structure, are regulated independently. Further, we hypothesized that phenotypic plasticity of double-pulse rate results in quantitative changes, whereas that of call structure in qualitative changes. We varied the photoperiod and duration of diapause during male juvenile and adult development during rearing and analyzed the double-pulse rate and call structure of the animals. Double-pulse rate changed in a quantitative fashion in both populations and significant changes appeared at different developmental points, i.e., the double-pulse rate slowed down during juvenile development in Florida, whereas during adult diapause in Puerto Rico. In the Florida population, both the number of males producing and the proportion of total call time covered by the alternative call structure (= continuous calls) increased with duration spent in diapause. In the Puerto Rico population, expression of the alternative call structure was extremely rare. Our results suggest that the expression of both pulse rate and call structure was quantitative and not categorical. Our systematic variation of environmental variables demonstrated a wide range of phenotypic variation that can be induced during development. Our study highlights the evolutionary potential of hidden genetic variation and phenotypic plasticity when confronted with rapidly changing environments and their potential role in providing variation necessary for communication systems to evolve

    Tradeoffs limit the evolution of male traits that are attractive to females

    Get PDF
    Tradeoffs occur between a variety of traits in a diversity of organisms, and these tradeoffs can have major effects on ecological and evolutionary processes. Far less is known, however, about tradeoffs between male traits that affect mate attraction than about tradeoffs between other types of traits. Previous results indicate that females of the variable field cricket, Gryllus lineaticeps, prefer male songs with higher chirp rates and longer chirp durations. In the current study, we tested the hypothesis that a tradeoff between these traits affects the evolution of male song. The two traits were negatively correlated among full-sibling families, consistent with a genetically based tradeoff, and the tradeoff was stronger when nutrients were limiting. In addition, for males from 12 populations reared in a common environment, the traits were negatively correlated within populations, the strength of the tradeoff was largely invariant across populations, and the within-population tradeoff predicted how the traits have evolved among populations. A widespread tradeoff thus affects male trait evolution. Finally, for males from four populations assayed in the field, the traits were negatively correlated within and among populations. The tradeoff is thus robust to the presence of environmental factors that might mask its effects. Together, our results indicate there is a fundamental tradeoff between male traits that: (i) limits the ability of males to produce multiple attractive traits; (ii) limits how male traits evolve; and (iii) might favor plasticity in female mating preferences. Includes Supplementary Materials

    _

    Get PDF
    SUMMARY Acoustic pattern recognition is important for bringing together males and females in many insect species. We used phonotaxis experiments on a walking compensator to study call recognition in the katydid Neoconocephalus affinis, a species with a doublepulsed call and an atypically slow pulse rate for the genus. Call recognition in this species is unusual because females require the presence of two alternating pulse amplitudes in the signal. A Fourier analysis of the stimulus-envelopes revealed that females respond only when both the first and second harmonics of the AM spectrum are of similar amplitude. The second harmonic is generated by the amplitude difference between the two pulses making up a pulse-pair. Females respond to double pulses that have been merged into a single pulse only if this amplitude modulation is preserved. Further experiments suggest that females use a resonance mechanism to recognize the pulse rate of the call, supporting a neural model of rate recognition in which periodic oscillations in membrane potential are used to filter the pulse rate of the signal. Our results illustrate how a reduction in pulse rate extends the opportunities for females to evaluate fine-scale temporal properties of calls, and provide further evidence for the importance of oscillatory membrane properties in temporal processing. The results are discussed with regard to evolutionary changes in call recognition mechanisms within the genus

    Swaying threads of a solar filament

    Full text link
    From recent high resolution observations obtained with the Swedish 1 m Solar Telescope in La Palma, we detect swaying motions of individual filament threads in the plane of the sky. The oscillatory character of these motions are comparable with oscillatory Doppler signals obtained from corresponding filament threads. Simultaneous recordings of motions in the line of sight and in the plane of the sky give information about the orientation of the oscillatory plane. These oscillations are interpreted in the context of the magnetohydrodynamic theory. Kink magnetohydrodynamic waves supported by the thread body are proposed as an explanation of the observed thread oscillations. On the basis of this interpretation and by means of seismological arguments, we give an estimation of the thread Alfv\'en speed and magnetic field strength by means of seismological arguments.Comment: Accepted for publication in the Astrophysical Journa

    Numerical solution of gas dynamics equations on the computational meshes with arbitrary number of cell faces using high order spatial accuracy schemes

    Get PDF
    In the present study methodology and algorithm of numerical solution of gas dynamics equations on the computational meshes with arbitrary number of cell faces using high order spatial accuracy schemes is presented. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows to use the computational meshes with arbitrary number of cell faces

    Atherosclerotic plaque destabilization in Mice: A comparative study

    Get PDF
    Atherosclerosis-Associated diseases are the main cause ofmortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions thatmay become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-Threatening thrombotic events associated with high-risk vulnerable plaques. Hyperlipidemic mouse models have been extensively used in studying the mechanisms controlling initiation and progression of atherosclerosis. However, the understanding of mechanisms leading to atherosclerotic plaque destabilization has been hampered by the lack of proper animalmodelsmimicking this process. Although various mouse models generate atherosclerotic plaques with histological features of human advanced lesions, a consensus model to study atherosclerotic plaque destabilization is still lacking. Hence, we studied the degree and features of plaque vulnerability in different mouse models of atherosclerotic plaque destabilization and find that the model based on the placement of a shear stress modifier in combination with hypercholesterolemia represent with high incidence the most human like lesions compared to the other models

    Investigating the Associations among Overtime Work, Health Behaviors, and Health: A Longitudinal Study among Full-time Employees

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Background It has often been suggested that high levels of overtime lead to adverse health outcomes. One mechanism that may account for this association is that working overtime leads to elevated levels of stress, which could affect worker’s behavioral decisions or habits (such as smoking and lack of physical activity). In turn, this could lead to adverse health. Purpose The present study examined this reasoning in a prospective longitudinal design. Data from the prospective 2-year Study on Health at Work (N=649) were used to test our hypotheses. Methods Structural equation analysis was used to examine the relationships among overtime, beneficial (exercising, intake of fruit and vegetables) and risky (smoking and drinking) health behaviors, and health indicators (BMI and subjective health). Results Working overtime was longitudinally related with adverse subjective health, but not with body mass
    corecore