35 research outputs found

    Investigation of the feasibility to use Zeeman-effect background correction for the graphite furnace determination of phosphorus using high-resolution continuum source atomic absorption spectrometry as a diagnostic tool

    Get PDF
    The determination of phosphorus by graphite furnace atomic absorption spectrometry at the non-resonance line at 213.6 nm, and the capability of Zeeman-effect background correction (Z-BC) to deal with the fine-structured background absorption due to the PO molecule have been investigated in the presence of selected chemical modifiers. Two line source atomic absorption spectrometers, one with a longitudinally heated and the other with a transversely heated graphite tube atomizer have been used in this study, as well as two prototype high-resolution continuum source atomic absorption spectrometers, one of which had a longitudinally arranged magnet at the furnace. It has been found that Z-BC is capable correcting very well the background caused by the PO molecule, and also that of the NO molecule, which has been encountered when the Pd + Ca mixed modifier was used. Both spectra exhibited some Zeeman splitting, which, however, did not cause any artifacts or correction errors. The practical significance of this study is to confirm that accurate results can be obtained for the determination of phosphorus using Z-BC. The best sensitivity with a characteristic mass of m(0) = 11 ng P has been obtained with the pure Pd modifier, which also caused the lowest background level. The characteristic mass obtained with the mixed Pd + Ca modifier depended on the equipment used and was between m(0) = 9 ng P and m(0) = 15 ng P, and the background signal was higher. The major problem of Z-BC remains the relatively restricted linear working range

    Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Get PDF
    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3σ), based on ten atomizations of an unexposed filter, was 40 ng g- 1, corresponding to 0.12 ng m- 3 in the air for a typical air volume of 1440 m3 collected within 24 h. The limit of quantification was 150 ng g-1, equivalent to 0.41 ng m-3 in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g-1 and 381 ± 24 ng g-1. These values correspond to a mercury concentration in the air between < 0.12 ng m-3 and 1.47 ± 0.09 ng m-3. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.Fil: Araujo, Rennan G. O.. Universidade Federal de Santa Catarina; BrasilFil: Vignola, Fabíola. Universidade Federal de Santa Catarina; BrasilFil: Castilho, Ivan N. B.. Universidade Federal de Santa Catarina; BrasilFil: Borges, Daniel L. G.. Universidade Federal de Santa Catarina; Brasil. Universidade Federal da Bahia; BrasilFil: Welz, Bernhard. Universidade Federal de Santa Catarina; Brasil. Universidade Federal da Bahia; BrasilFil: Vale, Maria Goreti R.. Universidade Federal do Rio Grande do Sul; Brasil. Universidade Federal da Bahia; BrasilFil: Smichowski, Patricia Nora. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ferreira, Sérgio L. C.. Universidade Federal da Bahia; BrasilFil: Becker Ross, Helmut. Leibniz-Institut für Analytische Wissenschaften; Alemani

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    High-resolution continuum-source atomic absorption spectrometry: what can we expect?

    No full text
    A new instrumental concept has been developed for atomic absorption spectrometry (AAS), using a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator and a CCD array detector, providing a resolution of ~2 pm per pixel. Among the major advantages of the system are: i) an improved signal-to-noise ratio because of the high intensity of the radiation source, resulting in improved photometric precision and detection limits; ii) for the same reason, there are no more 'weak' lines, i.e. secondary lines can be used without compromises; iii) new elements might be determined, for which no radiation source has been available; iv) the entire spectral environment around the analytical line becomes 'visible', giving a lot more information than current AAS instruments; v) the CCD array detector allows a truly simultaneous background correction close to the analytical line; vi) the software is capable of storing reference spectra, e.g. of a molecular absorption with rotational fine structure, and of subtracting such spectra from the spectra recorded for a sample, using a least squares algorithm; vii) although not yet realized, the system makes possible a truly simultaneous multi-element AAS measurement when an appropriate two-dimensional detector is used, as is already common practice in optical emission spectrometry; vii) preliminary experiments have indicated that the instrumental concept could result in a more rugged analytical performance in the determination of trace elements in complex matrices

    Determination of organic chlorine in water via AlCl derivatization and detection by high-resolution continuum source graphite furnace molecular absorption spectrometry

    No full text
    High-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GF-MAS) was employed for determining adsorbable organic chlorine (AOCl) in water. Organic chlorine was indirectly quantified by monitoring the molecular absorption of the transient aluminum monochloride molecule (AlCl) around a wavelength of 261.42 nm in a graphite furnace. An aluminum solution was used as the molecular-forming modifier. A zirconium coated graphite furnace, as well as Sr and Ag solutions were applied as modifiers for a maximal enhancement of the absorption signal. The pyrolysis and vaporization temperatures were 600 °C and 2300 °C, respectively. Non-spectral interferences were observed with F, Br, and I at concentrations higher than 6 mg L−1, 50 mg L−1, and 100 mg L−1, respectively. Calibration curves with NaCl, 4-chlorophenol, and trichlorophenol present the same slope and dynamic range, which indicates the chlorine atom specificity of the method. This method was evaluated and validated using synthetic water samples, following the current standard DIN EN ISO 9562:2004 for the determination of the sum parameter adsorbable organic halides (AOX) for water quality. These samples contain 4-chlorophenol as the chlorinated organic standard in an inorganic chloride matrix. Prior to analysis, organic chlorine was extracted from the inorganic matrix via solid-phase extraction with a recovery rate >95%. There were no statistically significant differences observed between measured and known values and for a t-test a confidence level of 95% was achieved. The limits of detection and characteristic mass were found to be 48 and 22 pg, respectively. The calibration curve was linear in the range 0.1–2.5 ng with a correlation coefficient R2 = 0.9986
    corecore