36 research outputs found

    Enhancing Remote Sensing Based Yield Forecasting: Application to Winter Wheat in United States

    Get PDF
    Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. In Becker-Reshef et al. (2010) and Franch et al. (2015) we developed an empirical generalized model for forecasting winter wheat yield. In this study we present a new model based on the extrapolation of the pure wheat signal (100 percent of wheat within the pixel) from MODIS (Moderate-resolution Imaging Spectroradiometer) data at 1-kilometer resolution and using the Difference Vegetation Index (DVI). The model has been applied to monitor the national and state level yield of winter wheat in the United States from 2001 to 2016

    Improved global cropland data as an essential ingredient for food security

    Get PDF
    Lack of accurate maps on the extent of global cropland, and particularly the spatial distribution of major crop types, hampers policy and strategic investment and could potentially impede efforts to improve food security in an environment characterized by continued market volatility and a changing climate. Here we discuss the pressing need for the provision of spatially explicit cropland datasets at a global scale and review the strengths and weaknesses of the various approaches used to develop such data

    WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping

    Get PDF
    The challenge of global food security in the face of population growth, conflict and climate change requires a comprehensive understanding of cropped areas, irrigation practices and the distribution of major commodity crops like maize and wheat. However, such understanding should preferably be updated at seasonal intervals for each agricultural system rather than relying on a single annual assessment. Here we present the European Space Agency funded WorldCereal system, a global, seasonal, and reproducible crop and irrigation mapping system that addresses existing limitations in current global-scale crop and irrigation mapping. WorldCereal generates a range of global products, including temporary crop extent, seasonal maize and cereals maps, seasonal irrigation maps, seasonal active cropland maps, and confidence layers providing insights into expected product quality. The WorldCereal product suite for the year 2021 presented here serves as a global demonstration of the dynamic open-source WorldCereal system. The presented products are fully validated, e.g., global user's and producer's accuracies for the annual temporary crop product are 88.5 % and 92.1 %, respectively. The WorldCereal system provides a vital tool for policymakers, international organizations, and researchers to better understand global crop and irrigation patterns and inform decision-making related to food security and sustainable agriculture. Our findings highlight the need for continued community efforts such as additional reference data collection to support further development and push the boundaries for global agricultural mapping from space. The global products are available at https://doi.org/10.5281/zenodo.7875104 (Van Tricht et al., 2023)

    Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection

    Get PDF
    Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Building a consolidated community global cropland map

    No full text
    This paper describes the start of a data sharing process to develop a consolidated community cropland map, which was initiated through a recent workshop on characterizing and validating global agricultural land cover. Participants from different organizations around the world were asked to contribute their various cropland maps prior to the workshop. Other data such as geo-tagged photos, in-situ data, classified satellite images and videos also were provided as part of this process. The data are now available online at agriculture.geo-wiki.org. This data sharing exercise, which has culminated in a new Sub-task on Agricultural Mapping as part of the GEO Agricultural Monitoring Task, will continue as an ongoing process and represents an effective model for how data sharing could be facilitated across the GEO community

    Remote Sensing Based Yield Monitoring: Application to Winter Wheat in United States and Ukraine

    No full text
    Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. Earth observation data from space can contribute to agricultural monitoring, including crop yield assessment and forecasting. In this study, we present a new crop yield model based on the Difference Vegetation Index (DVI) extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) data at 1 km resolution and the un-mixing of DVI at coarse resolution to a pure wheat signal (100 percent of wheat within the pixel). The model was applied to estimate the national and subnational winter wheat yield in the United States and Ukraine from 2001 to 2017. The model at the subnational level shows very good performance for both countries with a coefficient of determination higher than 0.7 and a root mean square error (RMSE) of lower than 0.6 t/ha (tonnes per hectare) (15-18 percent). At the national level for the United States (US) and Ukraine the model provides a strong coefficient of determination of 0.81 and 0.86, respectively, which demonstrates good performance at this scale. The model was also able to capture low winter wheat yields during years with extreme weather events, for example 2002 in US and 2003 in Ukraine. The RMSE of the model for the US at the national scale is 0.11 t/ha (3.7 percent) while for Ukraine it is 0.27 t/ha (8.4 percent)
    corecore