33 research outputs found

    Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1)

    Get PDF
    Epigenetic marks such as DNA methylation and histone modification can vary among plant accessions creating epi-alleles with different levels of expression competence. Mutations in epigenetic pathway functions are powerful tools to induce epigenetic variation. As an alternative approach, we investigated the potential of over-expressing an epigenetic function, using DNA METHYLTRANSFERASE1 (MET1) for proof-of-concept. In Arabidopsis thaliana, MET1 controls maintenance of cytosine methylation at symmetrical CG positions. At some loci, which contain dense DNA methylation in CG- and non-CG context, loss of MET1 causes joint loss of all cytosines methylation marks. We find that over-expression of both catalytically active and inactive versions of MET1 stochastically generates new epi-alleles at loci encoding transposable elements, non-coding RNAs and proteins, which results for most loci in an increase in expression. Individual transformants share some common phenotypes and genes with altered gene expression. Altered expression states can be transmitted to the next generation, which does not require the continuous presence of the MET1 transgene. Long-term stability and epigenetic features differ for individual loci. Our data show that over-expression of MET1, and potentially of other genes encoding epigenetic factors, offers an alternative strategy to identify epigenetic target genes and to create novel epi-alleles

    A New Attempt to Establish the International Radiocarbon Soils Database (IRSDB)

    No full text
    From the 20th International Radiocarbon Conference held in Kona, Hawaii, USA, May 31-June 3, 2009.Twenty years after the first International Radiocarbon Database Workshop, and 13 yr after the setup of a preliminary structure for a worldwide database on 14C dates of soils, sound reasons and excuses for not establishing a real and globally accessible database have diminished. Climate change itself is widely accepted as reality now, and the strong demand of the modeling community for reliable data of the carbon pool--especially in soils--has been maintained. With the steadily increasing capacity of 14C dating facilities, these data can be and are produced. Nevertheless, they still cannot be accessed easily and equally enough. Now, decreased costs of hardware and recent developments of the internet enable the IRSDB to be implemented, in a joint effort. As a seed, a test server has been set up, with open-source software, housing the database in alpha-stage, a web interface, and a community portal. Thus, the development of the design as well as the data input of the database is done in close collaboration of the users of the database, the laboratories, soil scientists, archaeologists, modelers, other scientists, and interested laypersons. In order to guarantee the longtime independence of the availability and usability of the database from vendors or changing standards, only widely used open-source software and open standards are used. Therefore, the development of plug-ins for data input from laboratory databases or output to different required formats as well as interfaces to GIS and other software is possible. A version control system takes care of the integrity of the data.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Requirements for an International Radiocarbon Soils Database

    No full text
    This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Report of the Radiocarbon in Soils Workshop Saturday 13 August 1994

    No full text
    This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
    corecore