39,814 research outputs found

    Development of non-linear finite element computer code

    Get PDF
    Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein

    Pathways to double ionization of atoms in strong fields

    Full text link
    We discuss the final stages of double ionization of atoms in a strong linearly polarized laser field within a classical model. We propose that all trajectories leading to non-sequential double ionization pass close to a saddle in phase space which we identify and characterize. The saddle lies in a two degree of freedom subspace of symmetrically escaping electrons. The distribution of longitudinal momenta of ions as calculated within the subspace shows the double hump structure observed in experiments. Including a symmetric bending mode of the electrons allows us to reproduce the transverse ion momenta. We discuss also a path to sequential ionization and show that it does not lead to the observed momentum distributions.Comment: 10 pages, 10 figures; fig.6 and 7 exchanged in the final version accepted for publication in Phys. Rev.

    Non-sequential triple ionization in strong fields

    Get PDF
    We consider the final stage of triple ionization of atoms in a strong linearly polarized laser field. We propose that for intensities below the saturation value for triple ionization the process is dominated by the simultaneous escape of three electrons from a highly excited intermediate complex. We identify within a classical model two pathways to triple ionization, one with a triangular configuration of electrons and one with a more linear one. Both are saddles in phase space. A stability analysis indicates that the triangular configuration has the larger cross sections and should be the dominant one. Trajectory simulations within the dominant symmetry subspace reproduce the experimentally observed distribution of ion momenta parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    A Note on Flux Induced Superpotentials in String Theory

    Get PDF
    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction.Comment: 19 pages, no figure

    Thermal X-rays from Millisecond Pulsars: Constraining the Fundamental Properties of Neutron Stars

    Full text link
    Abridged) We model the X-ray properties of millisecond pulsars (MSPs) by considering hot spot emission from a weakly magnetized rotating neutron star (NS) covered by an optically-thick hydrogen atmosphere. We investigate the limitations of using the thermal X-ray pulse profiles of MSPs to constrain the mass-to-radius (M/RM/R) ratio of the underlying NS. The accuracy is strongly dependent on the viewing angle and magnetic inclination. For certain systems, the accuracy is ultimately limited only by photon statistics implying that future X-ray observatories could, in principle, achieve constraints on M/RM/R and hence the NS equation of state to better than ∼\sim5%. We demonstrate that valuable information regarding the basic properties of the NS can be extracted even from X-ray data of fairly limited photon statistics through modeling of archival spectroscopic and timing observations of the nearby isolated PSRs J0030+0451 and J2124--3358. The X-ray emission from these pulsars is consistent with the presence of a hydrogen atmosphere and a dipolar magnetic field configuration, in agreement with previous findings for PSR J0437--4715. For both MSPs, the favorable geometry allows us to place interesting limits on the allowed M/RM/R of NSs. Assuming 1.4 M⊙_{\odot}, the stellar radius is constrained to be R>9.4R > 9.4 km and R>7.8R > 7.8 km (68% confidence) for PSRs J0030+0451 and J2124--3358, respectively. We explore the prospects of using future observatories such as \textit{Constellation-X} and \textit{XEUS} to conduct blind X-ray timing searches for MSPs not detectable at radio wavelengths due to unfavorable viewing geometry. Using the observational constraints on the pulsar obliquities we are also able to place strong constraints on the magnetic field evolution model proposed by Ruderman.Comment: 9 pages, 7 figures, published in the Astrophysical Journal (Volume 689, Issue 1, pp. 407-415

    Closed-form expressions for correlated density matrices: application to dispersive interactions and example of (He)2

    Full text link
    Empirically correlated density matrices of N-electron systems are investigated. Exact closed-form expressions are derived for the one- and two-electron reduced density matrices from a general pairwise correlated wave function. Approximate expressions are proposed which reflect dispersive interactions between closed-shell centro-symmetric subsystems. Said expressions clearly illustrate the consequences of second-order correlation effects on the reduced density matrices. Application is made to a simple example: the (He)2 system. Reduced density matrices are explicitly calculated, correct to second order in correlation, and compared with approximations of independent electrons and independent electron pairs. The models proposed allow for variational calculations of interaction energies and equilibrium distance as well as a clear interpretation of dispersive effects on electron distributions. Both exchange and second order correlation effects are shown to play a critical role on the quality of the results.Comment: 22 page

    Introduction to the AdS/CFT correspondence

    Full text link
    This is a pedagogical introduction to the AdS/CFT correspondence, based on lectures delivered by the author at the third IDPASC school. Starting with the conceptual basis of the holographic dualities, the subject is developed emphasizing some concrete topics, which are discussed in detail. A very brief introduction to string theory is provided, containing the minimal ingredients to understand the origin of the AdS/CFT duality. Other topics covered are the holographic calculation of correlation functions, quark-antiquark potentials and transport coefficients.Comment: 64 pages, 12 figures;v2: minor improvements;v3: references adde

    The L_X--M relation of Clusters of Galaxies

    Get PDF
    We present a new measurement of the scaling relation between X-ray luminosity and total mass for 17,000 galaxy clusters in the maxBCG cluster sample. Stacking sub-samples within fixed ranges of optical richness, N_200, we measure the mean 0.1-2.4 keV X-ray luminosity, , from the ROSAT All-Sky Survey. The mean mass, , is measured from weak gravitational lensing of SDSS background galaxies (Johnston et al. 2007). For 9 <= N_200 < 200, the data are well fit by a power-law, /10^42 h^-2 erg/s = (12.6+1.4-1.3 (stat) +/- 1.6 (sys)) (/10^14 h^-1 M_sun)^1.65+/-0.13. The slope agrees to within 10% with previous estimates based on X-ray selected catalogs, implying that the covariance in L_X and N_200 at fixed halo mass is not large. The luminosity intercent is 30%, or 2\sigma, lower than determined from the X-ray flux-limited sample of Reiprich & Bohringer (2002), assuming hydrostatic equilibrium. This difference could arise from a combination of Malmquist bias and/or systematic error in hydrostatic mass estimates, both of which are expected. The intercept agrees with that derived by Stanek et al. (2006) using a model for the statistical correspondence between clusters and halos in a WMAP3 cosmology with power spectrum normalization sigma_8 = 0.85. Similar exercises applied to future data sets will allow constraints on the covariance among optical and hot gas properties of clusters at fixed mass.Comment: 5 pages, 1 figure, MNRAS accepte

    Low-temperature ordered phases of the spin-12\frac{1}{2} XXZ chain system Cs2_2CoCl4_4

    Full text link
    In this study the magnetic order of the spin-1/2 XXZ chain system Cs2_2CoCl4_4 in a temperature range from 50 mK to 0.5 K and in applied magnetic fields up to 3.5 T is investigated by high-resolution measurements of the thermal expansion and the specific heat. Applying magnetic fields along a or c suppresses TNT_\textrm{N} completely at about 2.1 T. In addition, we find an adjacent intermediate phase before the magnetization saturates close to 2.5 T. For magnetic fields applied along b, a surprisingly rich phase diagram arises. Two additional transitions are observed at critical fields μ0HSF1≃0.25\mu_0 H_{SF1}\simeq 0.25 T and μ0HSF2≃0.7\mu_0 H_{SF2}\simeq 0.7 T, which we propose to arise from a two-stage spin-flop transition.Comment: 10 pages, 10 figure
    • …
    corecore