32,770 research outputs found

    Geometry and supersymmetry of heterotic warped flux AdS backgrounds

    Full text link
    We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdSnAdS_n backgrounds with n3n\not=3. Moreover the warp factor of AdS3_3 backgrounds is constant, the geometry is a product AdS3×M7AdS_3\times M^7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M7M^7 has been specified in all cases. For 2 supersymmetries, it has been found that M7M^7 admits a suitably restricted G2G_2 structure. For 4 supersymmetries, M7M^7 has an SU(3)SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M7M^7 has an SU(2)SU(2) structure and can be described locally as a S3S^3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-K\"ahler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α\alpha' corrections.Comment: 34 pages. Reference adde

    Properties of Hot Stars in the Wolf-Rayet galaxy NGC5253 from ISO Spectroscopy

    Get PDF
    ISO-SWS spectroscopy of the WR galaxy NGC5253 is presented, and analysed to provide estimates of its hot young star population. Our approach differs from previous investigations in that we are able to distinguish between the regions in which different infrared fine-structure lines form, using complementary ground-based observations. The high excitation nebular [SIV] emission is formed in a very compact region, which we attribute to the central super-star-nucleus, and lower excitation [NeII] nebular emission originates in the galactic core. We use photo-ionization modelling coupled with the latest theoretical O-star flux distributions to derive effective stellar temperatures and ionization parameters of Teff>38kK, logQ=8.25 for the compact nucleus, with Teff=35kK, logQ<8 for the larger core. Results are supported by more sophisticated calculations using evolutionary synthesis models. We assess the contribution that Wolf-Rayet stars may make to highly ionized nebular lines (e.g. [OIV]). From our Br(alpha) flux, the 2" nucleus contains the equivalent of approximately 1000 O7V star equivalents and the starburst there is 2-3Myr old; the 20" core contains about 2500 O7V star equivalents, with a representative age of 5Myr. The Lyman ionizing flux of the nucleus is equivalent to the 30 Doradus region. These quantities are in good agreement with the observed mid-IR dust luminosity of 7.8x10^8 L(sun) Since this structure of hot clusters embedded in cooler emission may be common in dwarf starbursts, observing a galaxy solely with a large aperture may result in confusion. Neglecting the spatial distribution of nebular emission in NGC5253, implies `global' stellar temperatures (or ages) of 36kK (4.8Myr) and 39kK (2.9 or 4.4Myr) from the observed [NeIII/II] and [SIV/III] line ratios, assuming logQ=8.Comment: 16 pages, 7 figures, uses mn.sty, to appear in MNRA

    The population of deformed bands in 48^{48}Cr by emission of 8^{8}Be from the 32^{32}S + 24^{24}Mg reaction

    Full text link
    Using particle-γ\gamma coincidences we have studied the population of final states after the emission of 2 α\alpha-particles and of 8^{8}Be in nuclei formed in 32^{32}S+24^{24}Mg reactions at an energy of EL(32S)=130MeV\textrm{E}_{\rm L}(^{32}\textrm{S}) = 130 {\rm MeV}. The data were obtained in a setup consisting of the GASP γ\gamma-ray detection array and the multidetector array ISIS. Particle identification is obtained from the Δ\DeltaE and E signals of the ISIS silicon detector telescopes, the 8^{8}Be being identified by the instantaneous pile up of the Δ\DeltaE and E pulses. γ\gamma-ray decays of the 48^{48}Cr nucleus are identified with coincidences set on 2 α\alpha-particles and on 8^{8}Be. Some transitions of the side-band with Kπ=4K^\pi=4^{-} show stronger population for 8^{8}Be emission relative to that of 2 α\alpha-particles (by a factor 1.51.81.5-1.8). This observation is interpreted as due to an enhanced emission of 8^{8}Be into a more deformed nucleus. Calculations based on the extended Hauser-Feshbach compound decay formalism confirm this observation quantitatively.Comment: 17 pages, 9 figures accepted for publication in J. Phys.

    Hydrazine monitoring in spacecraft

    Get PDF
    Hydrazine (HZ) and monomethyl hydrazine (MMH) are highly toxic compounds used as fuels in the Space Shuttle Orbiter Main Engines and in its maneuvering and reaction control system. Satellite refueling during a mission may also result in release of hydrazines. During extravehicular activities, the potential exists for hydrazines to contaminate the suit and to be brought into the internal atmosphere inadvertantly. Because of the high toxicity of hydrazines, a very sensitive, reliable, interference-free, and real-time method of measurement is required. A portable ion mobility spectrometer (IMS) has exhibited a low ppb detection limit for hydrazines suggesting a promising technology for the detection of hydrazines in spacecraft air. The Hydrazine Monitor is a modified airborne vapor monitor (AVM) with a custom-built datalogger. This off-the-shelf IMS was developed for the detection of chemical warfare agents on the battlefield. After early evaluations of the AVM for hydrazine measurements showed a serious interference from ammonia, the AVM was modified to measure HZ and MMH in the ppb concentration range without interference from ammonia in the low ppm range. A description of the Hydrazine Monitor and how it functions is presented

    Money in monetary policy design: monetary cross-checking in the New-Keynesian model

    Get PDF
    In the New-Keynesian model, optimal interest rate policy under uncertainty is formulated without reference to monetary aggregates as long as certain standard assumptions on the distributions of unobservables are satisfied. The model has been criticized for failing to explain common trends in money growth and inflation, and that therefore money should be used as a cross-check in policy formulation (see Lucas (2007)). We show that the New-Keynesian model can explain such trends if one allows for the possibility of persistent central bank misperceptions. Such misperceptions motivate the search for policies that include additional robustness checks. In earlier work, we proposed an interest rate rule that is near-optimal in normal times but includes a cross-check with monetary information. In case of unusual monetary trends, interest rates are adjusted. In this paper, we show in detail how to derive the appropriate magnitude of the interest rate adjustment following a significant cross-check with monetary information, when the New-Keynesian model is the central bank’s preferred model. The cross-check is shown to be effective in offsetting persistent deviations of inflation due to central bank misperceptions. Keywords: Monetary Policy, New-Keynesian Model, Money, Quantity Theory, European Central Bank, Policy Under Uncertaint

    ALMA observations of the vibrationally-excited rotational CO transition v=1,J=32v=1, J=3-2 towards five AGB stars

    Get PDF
    We report the serendipitous detection with ALMA of the vibrationally-excited pure-rotational CO transition v=1,J=32v=1, J=3-2 towards five asymptotic giant branch (AGB) stars, oo Cet, R Aqr, R Scl, W Aql, and π1\pi^1 Gru. The observed lines are formed in the poorly-understood region located between the stellar surface and the region where the wind starts, the so-called warm molecular layer. We successfully reproduce the observed lines profiles using a simple model. We constrain the extents, densities, and kinematics of the region where the lines are produced. R Aqr and R Scl show inverse P-Cygni line profiles which indicate infall of material onto the stars. The line profiles of oo Cet and R Scl show variability. The serendipitous detection towards these five sources shows that vibrationally-excited rotational lines can be observed towards a large number of nearby AGB stars using ALMA. This opens a new possibility for the study of the innermost regions of AGB circumstellar envelopes.Comment: 6 pages, 2 figures, 2 tables, 2016MNRAS.463L..74

    CO and HCN isotopologue ratios in the outflows of AGB stars

    Full text link
    Isotopologue line intensity ratios of circumstellar molecules have been widely used to trace the photospheric elemental isotopic ratios of evolved stars. However, depending on the molecular species and the physical conditions of the environment, the circumstellar isotopologue ratio may deviate considerably from the stellar atmospheric value. In this paper, we aim to examine how the CO and HCN abundance ratios vary radially due to chemical reactions in the outflows of AGB stars and the effect of excitation and optical depth on the resulting line intensity ratios. We find that the circumstellar 12CO/13CO can deviate from its atmospheric value by up to 25-94% and 6-60% for C- and O-type CSEs, respectively. We show that variations of the intensity of the ISRF and the gas kinetic temperature can significantly influence the CO isotopologue ratio in the outer CSEs. On the contrary, the H12CN/H13CN ratio is stable for all tested mass-loss rates. The RT modeling shows that the integrated line intensity ratio of CO of different rotational transitions varies significantly for stars with intermediate mass-loss rates due to combined chemical and excitation effects. In contrast, the excitation conditions for the both HCN isotopologues are the same. We demonstrate the importance of using the isotopologue abundance profiles from chemical models as inputs to RT models in the interpretation of isotopologue observations. Previous studies of CO isotopologue ratios are based on multi-transition data for individual sources and it is difficult to estimate the errors in the reported values due to assumptions that are not entirely correct according to this study. If anything, previous studies may have overestimated the circumstellar 12CO/13CO abundance ratio. The use of the HCN as a tracer of C isotope ratios is affected by fewer complicating problems, provided one accounts corrections for high optical depths.Comment: 14 pages, 11 figure

    Computer model calibration with large non-stationary spatial outputs: application to the calibration of a climate model

    Get PDF
    Bayesian calibration of computer models tunes unknown input parameters by comparing outputs with observations. For model outputs that are distributed over space, this becomes computationally expensive because of the output size. To overcome this challenge, we employ a basis representation of the model outputs and observations: we match these decompositions to carry out the calibration efficiently. In the second step, we incorporate the non-stationary behaviour, in terms of spatial variations of both variance and correlations, in the calibration. We insert two integrated nested Laplace approximation-stochastic partial differential equation parameters into the calibration. A synthetic example and a climate model illustration highlight the benefits of our approach
    corecore