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Summary. Bayesian calibration of computer models tunes unknown input parameters by com-
paring outputs with observations. For model outputs that are distributed over space, this be-
comes computationally expensive because of the output size. To overcome this challenge, we
employ a basis representation of the model outputs and observations: we match these de-
compositions to carry out the calibration efficiently. In the second step, we incorporate the
non-stationary behaviour, in terms of spatial variations of both variance and correlations, in the
calibration.We insert two integrated nested Laplace approximation–stochastic partial differential
equation parameters into the calibration. A synthetic example and a climate model illustration
highlight the benefits of our approach.
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1. Introduction

Complex computer models are widely used in various fields of science and technology to mimic
complex physical systems. Computer model calibration involves comparing the simulations of a
complex computer model with the physical observations of the process being simulated. Increas-
ingly, computer model outputs are in the form of spatial fields, particularly in environmental
sciences. This poses a particular challenge to the calibration method.

The class of models that we consider in this paper is computer models with parametric inputs
of reasonable dimension (say below 20), and outputs distributed over two dimensions over the
plane or the sphere. This is unlike the formulation of Kennedy and O’Hagan (2001), which
is usually applied to scalar outputs. Our motivations come from climate modelling. Climate
scientists compare model outputs at a certain relevant altitude distributed over the sphere,
typically over a grid (along latitude and longitude), with a spatial data set of observations at the
same altitude.

In this paper, we develop our Bayesian calibration technique based on the framework of
Kennedy and O’Hagan (2001): we approximate the expensive computer model by a Gaussian
process (GP). This formulation has proven to be effective in a wide range of applications.
However, the GP calibration is computationally expensive for large model output spaces (cubic
complexity in the number of output points that are used to fit the GP due to the Cholesky
decomposition). Therefore several attempts to tackle this issue in the context of times series

Address for correspondence: Kai-Lan Chang, Department of Statistical Science, University College London,
Gower Street, London, WC1E 6BT, UK.
E-mail: ucakkac@ucl.ac.uk



52 K.-L. Chang and S. Guillas

of outputs or spatial outputs have been made either by using truncated basis representations
of model outputs to reduce dimension (Bayarri et al., 2007; Higdon et al., 2008; Chang et al.,
2014; Holden et al., 2015), or by using a separable covariance function over space and tuning
parameters to build a theoretical emulator for multivariate outputs (Rougier, 2008; Bhat et al.,
2010). We provide here a solution that makes use of an adequate representation of the spatial
outputs using Gaussian fields (GFs).

GFs play an important role in spatial statistics. The traditional approach is to specify a GF
through its covariance function. Another approach is to use the class of Gaussian Markov
random fields, which are discretely indexed GFs. The Markov property yields a sparse precision
matrix, so efficient numerical algorithms can be employed. Lindgren et al. (2011) showed that
the Gaussian Markov random field representation can be constructed explicitly by using a
certain form of stochastic partial differential equation (SPDE) which has a GF with Matérn
covariance as its solution. The representation employs piecewise linear basis functions, and
Gaussian weights with Markov dependences determined by the finite element method over a
triangulation of the domain. This technique can deal with large spatial data sets and naturally
accounts for non-stationarity. Our paper combines the strengths of the calibration formulation
with a truncated basis, and the SPDE-defined scale and precision parameterization to deal with
large-scale spatial outputs, and still provides a compromise with computational feasibility to
employ a fully Bayesian approach.

1.1. Challenge in Bayesian calibration
Among existing approaches of using the basis representation of model outputs, dimension
reduction is carried out mostly by data-driven basis functions, i.e. principal components (PCs),
also known as empirical orthogonal functions; see Higdon et al. (2008). Data-driven basis
functions offer a computationally efficient approach to adapt the outputs. For computer model
calibration of spatial outputs, this approach ignores the nature of the spatial dependence of the
outputs, treating spatial data as a multivariate vector.

Since the dimension of the input space for known input parameters is 2 (the location in space),
we could employ the usual calibration framework (Kennedy and O’Hagan, 2001). However, this
framework can deal with only a few thousand output points at these input locations. But climate
models produce outputs over large regular grid cells; for example our climate model uses a grid
of n = 96 × 144 = 13824 cells, and this is at a rather coarse choice of resolution. We calibrate
four input parameters with r =100 runs; thus the number of computer runs r, multiplied by the
output size n, creates a data matrix that is too large to fit a GP, which is an impossible task for a
fully Bayesian calibration (cubic complexity in the total number of output points to fit the GP).
Hence our approach aims to reduce the large amount of model outputs with a smaller basis
representation that makes use of the spatial dependence to extract key pieces of information,
instead of using all the output cells. Our approach involves transforming a large scalar output
over space into a much smaller set of scalars by using a spherical harmonics representation and
the SPDE technique.

1.2. Atmospheric chemistry model output
We consider that an atmospheric chemistry model discretizes the Earth’s surface into a three-
dimensional grid of cells over time, which can be characterized by horizontal (latitude and
longitude), vertical (altitude or pressure level) and temporal resolutions. The output in each cell
is parameterized by complex mathematical equations that describe the chemistry species in it
and the physical circulation through it. The four-dimensional interactions of climate dynamics
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are currently beyond our scope for the calibration. Our paper focuses only on the horizontal
variations. Our practical interest is to tune, and quantify uncertainty in, climate experiments.
The ‘Whole atmosphere community climate model’ (WACCM) is a general circulation model
of the middle and upper atmosphere. The WACCM is an extension of the National Center for
Atmospheric Research ‘Community Earth system model’. Many parameterizations of physical
processes have to be set to run the WACCM, resulting in potential concerns about error growth
(Liu et al., 2009).

To describe the general framework, let η.si, θj/, i=1, : : : , n, j =1, : : : , r, be the r-runs model
outputs measured at n locations. Here we refer to m=n× r as the total number of outputs in
the simulations. We choose a design made of combinations of input values, and we impose dis-
tributional prior assumptions on the inputs. The aim of calibration is to estimate the best input
setting θÅ to match outputs to observations, and to investigate the discrepancy between obser-
vations and optimized outputs. Note that, in terms of the calibration framework of Kennedy
and O’Hagan (2001), our experiment does not have ‘known variable parameters’; output cells
are prescribed as a resolution in the climate model, and thus the spatial variations in different
model runs are completely differentiated by calibration inputs θ.

For each single run, the WACCM simulates output over a grid of n=96×144=13824 cells.
We explore the zonal wind outputs over the sphere, varying according to four gravity wave (GW)
input parameters with r =100 runs, to calibrate the GW parameters. The number of computer
runs r, multiplied by the output size n, is too large to fit a GP to the computer model and thus
challenges the fully Bayesian calibration to be performed.

1.3. The propagation of gravity waves
In climate modelling, the GWs parameterization aims to reduce zonal mean wind biases. Small
modification of parameterized GWs can have large effects by improving the propagation path-
ways of the Rossby waves (Alexander and Sato, 2015). GWs also play a dominant role in driving
the quasi-biennial oscillation (QBO), which is a dynamic process of zonal mean zonal winds
from eastward to westward in the tropical stratosphere. GWs, which are also called small-scale
atmospheric waves, generate a wide range of short horizontal wavelengths from mesoscale to
thousands of kilometres (Ern et al., 2014), and an even wider range of the processes impacted
by GWs (turbulence scales to planetary scales) (Liu et al., 2014). It is thus a challenge to simu-
late numerically all small waves and their cumulated effects that contribute to the QBO pattern
based on global observations (Alexander et al., 2010; Geller et al., 2013; Yu et al., 2017).

1.4. Outline of this paper
We propose to use a fixed spatial basis, like Bayarri et al. (2007) did by employing a wavelets basis
to describe functional model outputs. Our approach is also related to recent multiresolution
methods on spatial data (Nychka et al., 2002, 2015; Ilyas et al., 2017). With a fixed basis,
we can easily compare model outputs with observations over space. In addition, the use of
a fixed basis facilitates the quantification of the non-stationarity across space in the SPDE
model.

In Section 2 we present our approach in detail. We employ a truncated basis representation,
such as a B-splines decomposition or spherical harmonics transforms, to capture the output
features spatially. We then explore how parameters in an SPDE model can explicitly quantify the
non-stationarity of the spatial field (Bolin and Lindgren, 2011; Blangiardo and Cameletti, 2015;
Zammit-Mangion et al., 2015; Liu et al., 2016): we extend our approach by including spatially
varying scale and precision parameters in an SPDE model in our calibration framework. We
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then apply these techniques to a synthetic example in Section 3 and our real climate experiment
in Section 4. Finally, in Section 5, we discuss potential improvements to our approach.

2. Methods

To address the challenges of the uncertainty quantification at both global and local scales, and to
maintain computational feasibility for the Bayesian calibration, we pursue a sophisticated effort
that approximates the spatial variations effectively and efficiently. In Section 2.1, we adopt a
reduced rank spatial basis representation to capture the large-scale spatial variability. In the next
step in Section 2.2, we review the spatial modelling technique through the SPDE approach and
highlight its strength in capturing local spatial structures. We then combine these two approaches
into the calibration framework in Section 2.3 and provide guidance for the implementation in
Section 2.4.

2.1. Basis representation for the model output
In this section, we decompose spatial outputs and observations onto a basis of real-valued
basis functions, such as B-splines or spherical harmonics. We parsimoniously represent these
surfaces and construct a methodology for the calibration that makes use of the coefficients
in these representations. We follow the Bayesian calibration setting of Kennedy and O’Hagan
(2001). Let θ be the calibration parameters. The output η.·/ is computed at inputs .s, θ/ in an m-
point experimental design, where m=n× r means r computer runs measured at n locations. The
output η.s, θ/ is an approximation of the reality yR.s/. The discrepancy between the simulator
and the reality at the spatial locations is denoted δ.s/. The field data or observations yF.s/ of the
reality are collected at a number of locations s in an n-point spatial design (here a simple grid)
and are subject to a normal observation error ε.s/ with a constant variance across locations. The
measurement locations for observations and outputs can be different, since the methodology
accommodates such variation. The main equation is

yF.s/=yR.s/+ ε.s/=η.s, θÅ/+ δ.s/+ ε.s/: .1/

This formulation includes both parameter uncertainty and model discrepancy; however, it is
difficult to distinguish the uncertainty in the calibration parameters from discrepancy in real
applications due to lack of identifiability (Brynjarsdóttir and O’Hagan, 2014). Note that output
cells are prescribed as a model resolution; the uncertainties in η are completely determined by
θ. We use a set of spatial basis functions {ψz}, where z is an integer that represents the index
number within the ordered basis, to decompose each run of model output over space. Precisely,
for the Nηth level of expansion and for each run j,

η.s, θj/=
Nη∑
z=1

cM
z .θj/ψz.s/ j =1, : : : , r:

We assume that the approximation error in this representation is ignorable (i.e. we expect that,
the more bases, the lower the approximation error). The coefficients {cM

z } represent the surface
features at different levels of expansion. Similarly to Nychka et al. (2015), we conjecture that
different spatial basis functions will be valid for this representation, such as the Wendland family
(Wendland, 2004) that was used in Nychka et al. (2015) or popular spline-based approaches
(Wood, 2003; Williamson et al., 2012; Chakraborty et al., 2013; Bowman and Woods, 2016;
Chang et al., 2017). The observations can be written as (with an associated approximation error
ignored)
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yF.s/=
Ny∑
z=1

cF
z ψz.s/:

The physical spaces of both model outputs and observations are transformed into a functional
space that is spanned by the fixed basis. Since the aim is to calibrate the spatial outputs, we also
assume that the reality yR.s/, the discrepancy function δ.s/ and the measurement errors ε.s/ can
be represented by similar basis representations, albeit with more levels of variation than model
outputs:

yR.s/=
Ny∑
z=1

cR
z ψz.s/,

δ.s/=
Ny∑
z=1

cδzψz.s/,

ε.s/=
Ny∑
z=1

cεzψz.s/:

Indeed, the computer model does not include all possible physical processes that affect the
measurements. Hence, the spatial outputs from the computer simulation should be relatively
smoother than the observations. Therefore we assume a larger number of basis functions, Ny, in
the observations (automatically as well in the discrepancy and error functions) than for model
outputs (Nη, Nη�Ny). In the formulation of the calibration algorithm, we introduce coefficients
{cM

z |Nη <z � Ny}, all set to be 0. Indeed, we can then use the same number of basis functions
Ny to decompose yF and η. Then matching the coefficients in equation (1) yields

cF
z = cR

z + cεz = cM
z .θÅ/+ cδz + cεz, z=1, : : : , Ny: .2/

Hence, only the relatively smooth variations of the computer model match the variations in
observations. At this point we seek to capture only the large-scale variability derived from
calibration parameters; local structures will be accounted for in Section 2.2. The weights for the
measurement errors, cεz, are assumed to follow N.0, 1=λε/.

2.1.1. Gaussian process for the transformed coefficients
The GP assumption is imposed on each coefficient cM

z .θ/, z=1, : : : , Ny, of mean 0 and with a
covariance function

cov{cM
z .θ/, cM

z′ .θ′/}= 1
λη

Izz′
q∏

k=1
ρ

2γηk |θk−θ′
k |
γηk

ηk , .3/

where Izz′ is the Kronecker delta (Izz′ =1 if z= z′ and Izz′ =0 otherwise), q is the dimension of
θ, λη controls the marginal precision of η.·, ·/ and ρη controls the strength of the dependence
in each of the pairs of θ. To simplify the complexity and because the computer model response
to input tunes is nearly smooth and continuous, it is generally reasonable to assume that γη =
2 (Sacks et al., 1989; Higdon et al., 2004; Linkletter et al., 2006). Note that the coefficients
{cM

z } must be scaled to the unit hypercube; otherwise this covariance model is not appropriate.
This reparameterization of the square exponential covariance leads to a smooth and infinitely
differentiable representation for the model output (Stein, 1999). In addition, coefficients that
are associated with the same basis ψz form a block in the covariance structure, and we assume
that the correlation between different indices z is 0. Hence the rNy-vector cM has a multivariate
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normal prior with mean 0 and a covariance matrix with r × r Ny-blocks in the diagonal, and the
off-diagonal blocks are zero matrices.

The strong assumption of independence of the coefficients, through different blocks in the
covariance, may not be fully justifiable in all real applications. Indeed, it is possible that certain
physical properties propagate across multiple scales (but, even in that case, it may not constitute
a large proportion of the variation). However, this assumption leads to a great computational
advantage in terms of forming a block diagonal covariance model in the GP model. Traditionally
a GP fitting involves a complexity of O.m3/=O.n3r3/ and a storage cost of O.m2/=O.n2r2/.
In our approach the complexity and cost of our model are O.N3

y r3/ and O.N2
y r2/, where Ny �

n. The block diagonal assumption further reduces the complexity and cost to O.Nyr3/ and
O.Nyr2/. In a simulation study we discuss how this assumption is a compromise between fidelity
and complexity.

The decomposed discrepancy term cδz quantifies the inadequacy between the simulator and
reality in the functional domain. We assume that each cδz follows a normal distribution of mean
0 and with a covariance function

cov.cδz , cδz′/= 1
λδ

Izz′ : .4/

There is no conceptual difference in the model bias between our setting and another setting
that relies on a projection onto a basis (e.g. the PC approach), but there are differences in the
ability to pin down the biases concretely and adequately. Indeed, our approach allows the bias
to represent complex ranges of variations (due to its expression in a basis and the addition of
non-stationarity in what follows in this paper). Note that, among existing studies identifying
climate model biases, most of the biases display a systematic tendency (either underestimation
or overestimation) across certain regions (Jun et al., 2008; Lamarque et al., 2013; Wang et al.,
2014; Williamson et al., 2015) and thus a non-stationarity feature is desirable.

All the unknown parameters in the algorithm require specified prior distributions which
represent uncertainty about the values of these parameters. The following choices are made for
the priors.

(a) To represent our vague knowledge about calibration parameters, we specify a uniform
prior distribution over each of the calibration parameter intervals.

(b) To model the correlation parameters ρηk
, k = 1, : : : , q, a beta(1, 0.1) distribution is used,

which conservatively places most of its prior mass on values of ρη near 1 (indicating an
insignificant effect).

(c) Gamma prior distributions are used for each of the precision parameters λη, λδ and λε.
Specifically, we use priors λη ∼ GAM(5, 5) (with expectation 1 due to standardization
of the responses), λδ ∼ GAM(1, 0.01) (with expectation around 10% of the standard
deviation SD of the standardized responses) and λε∼ GAM(1, 0.003) (with expectation
around 5% of the SD of the standardized responses).

2.1.2. The posterior distributions
In this stage, all the r-run model outputs and observations, measured over an n-grid of cells, are
reduced to transformed coefficients. Denote the joint .r + 1/Ny data vector D = .cF, cM/. The
sampling likelihood for the full data is then

L.D|θ,λη, ρη,λδ, Σε/∝|ΣD|−1=2 exp{− 1
2 .DTΣ−1

D D/}, .5/

where
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ΣD =Ση +
(

Σε+Σδ 0
0 0

)
,

in which Σε is the Ny × Ny observation covariance matrix, Ση is obtained for each pair of
.r + 1/Ny simulation inputs through equation (3) corresponding to D and Σδ is an Ny × Ny

matrix obtained for each pair of Ny input through the instances of equation (4) that correspond
to the coefficients cF. Let π.θ/ be the joint prior distribution for the (unknown) calibration
vector θ. The resulting posterior density has the form

π.θ,λη, ρη,λδ|D/∝L.D|θ,λη, ρη,λδ, Σε/π.θ/π.λη/π.ρη/π.λδ/, .6/

which can be explored via a Markov chain Monte Carlo (MCMC) technique, for which we
employ a Metropolis–Hastings algorithm. The calibrated vector is then denoted by θÅ =
arg maxθπ.θ,λη, ρη,λδ|D/. We implement a Metropolis–Hastings algorithm to produce the
realization of the posterior. Metropolis updates are used for the correlation and the calibration
parameters with a uniform proposal distribution centred at the current value of the parameter.
The precision parameters are sampled by using Hastings updates with a uniform proposal dis-
tribution centred at the current value of the parameter (Higdon et al., 2008). This eventually
yields draws from the posterior distribution by repeatedly accepting and rejecting a choice of
move in the parameter space.

The specification of the covariance structures for the truncated basis representation is a mathe-
matical challenge: finding explicit expressions for the covariance is difficult (Jun and Stein, 2008).
There is an alternative way to model complex spatial covariance structures efficiently with the
added bonus of a suitable depiction of the non-stationarity structure into our calibration algo-
rithm: the SPDE approach. We introduce it in the next section.

2.2. Spatial modelling through the stochastic partial differential equation approach
Traditional models in spatial statistics build an approximation of the entire underlying random
field. They are usually specified through the covariance function of the latent field. To assess
uncertainties in the spatial interpolation over the whole spatial domain, we cannot build models
only for the discretely located observations or model outputs; we need to build an approximation
of the entire underlying stochastic process defined on the spatial field. We consider statistical
models for which the unknown functions are assumed to be realizations of a Gaussian random
spatial process. The conventional fitting approach spatially interpolates values as linear combi-
nations of the original observed locations, and this constitutes the spatial kriging predictor.

Because of the fixed underlying covariance structure, this approach requires more sophisti-
cated treatments to take into consideration non-stationarity (Stein, 2005; Jun and Stein, 2008;
Yue and Speckman, 2010; Kleiber and Nychka, 2012; Gramacy and Apley, 2015). A different
computational approach was introduced by Lindgren et al. (2011), in which random fields were
expressed as a weak solution to an SPDE, with explicit links between the parameters of the
SPDE model and the Matérn covariance function. In this section we review some of the main
concepts in spatial modelling through the SPDE approach.

It may seem contradictory to make use of the SPDE approach since it seemingly only captures
local structures, and climate model outputs display smooth variations. However, the SPDE
approach, especially the non-stationarity version, can translate these smooth variations of the
model outputs (and of observations) into a statistical description of the variations across space
that efficiently characterizes the spatial behaviour (through the scale and precision parameters).
Spatially distributed observations will still display more erratic behaviour than model outputs,
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but the SPDE approach will allow the calibration to be steered only by the parameters that are
associated with the smoothest components.

2.2.1. Matérn covariance and the link to stochastic partial differential equations
The Matérn function is a flexible covariance structure and is widely used in spatial statistics
(Stein, 2005; Jun and Stein, 2007, 2008; Gneiting et al., 2010; Genton and Kleiber, 2015).
The choice of covariance is not that important indeed for calibration parameters (Kennedy
and O’Hagan, 2001) but, for the outputs (across location inputs), the choice of covariance is
essential, as we show. The shape parameter ν> 0, the scale parameter κ> 0 and the marginal
precision τ2 > 0 parameterize it:

cov.h/= 21−ν

.4π/d=2 Γ.ν+d=2/κ2ντ2 κ‖h‖νKν κ‖h‖, h ∈Rd ,

where h denotes the difference between any two locations s and s′, h = s − s′ and Kν is the
modified Bessel function of the second kind of order ν.

We denote by Y.s/ the observations (or the spatially distributed model outputs) for a latent
spatial field X.s/, with a Matérn covariance structure. We assume zero mean Gaussian noise
W.s/, with a constant variance σ2

s : Y.s/=X.s/+W.s/. Thus, according to Whittle (1963), the
latent field X.s/ is the solution of a stationary SPDE:

.κ2 −Δ/α=2τX.s/=W.s/, .7/

where Δ is the Laplace operator. We explain in the next subsection how the analysis of this SPDE
can be carried out by the finite element method. The regularity (or smoothness) parameter ν
essentially determines the order of differentiability of the fields. The link between the Matérn
field and the SPDE is given by α= ν + d=2, which makes explicit the relationship between
dimension and regularity for fixed α. On more general manifolds than Rd , such as the sphere
(Chang, Guillas and Fioletov, 2015), the direct Matérn representation is not easy to implement
(for example, Matérn covariance with great circle distance is valid only at ν ∈ .0, 0:5] (Gneiting,
2013)), but the SPDE formulation provides a natural generalization, and the ν-parameter will
keep its meaning as the quantitative measure of regularity. Instead of defining Matérn fields by
the covariance function, Lindgren et al. (2011) used the solution of the SPDE as a definition, and
it is much easier and flexible to do so. This definition also facilitates non-stationary extensions
by allowing the SPDE parameters κ and τ in equation (7) to vary with space; hence they are
denoted κ.·/ and τ .·/ respectively.

2.2.2. Stochastic partial differential equation model construction
We estimate the SPDE parameters and supply uncertainty information about the spatial fields
by using the integrated nested Laplacian approximation (INLA) framework, which is available
as an R package (http://www.r-inla.org/) (Lindgren and Rue, 2015; Rue et al., 2017).
The models that are implemented in the INLA–SPDE framework are built on a basis represen-
tation (triangulation over the spatial domain): X.s/=ΣM

i=1ϕi.s/wi, where {wi} are the stochastic
weights chosen so that the distribution of the functions X.s/ approximates the distribution of
solutions to the SPDE on the space, and ϕi.s/ are a piecewise linear basis with compact support
(i.e. finite elements) to obtain a Markov structure, and to preserve it when conditioning on local
observed locations. The Markov property yields a sparse precision matrix, so efficient numerical
algorithms can be employed for large spatial data. The projection of the SPDE onto the basis
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representation is chosen by a finite element method. The finite element method represents a
general class of techniques for the approximate solution to partial differential equations. The
piecewise linear basis functions defined by a triangulation of the spatial domain enable us to
evaluate the precision matrix of the latent field explicitly. As a result, X.s/ follows a normal dis-
tribution with mean 0, and the precision matrix can be explicitly expressed as a combination of
the piecewise linear basis functions weighted by κ and τ (which means that κ and τ have a joint
influence on the marginal variances of the latent field). Then X.s/ can be generated continuously
as approximate solutions to the SPDE.

For the WACCM output domain, the triangulation is simply built on regularly gridded cells.
Note that the triangulation can be made adaptive to the irregularly distributed spatial data
(Cameletti et al., 2013). The default value in the INLA algorithm is α= 2, but 0 �α< 2 are
also available, though yet to be completely tested (Lindgren and Rue, 2015). So, with a two-
dimensional manifold (e.g. R2 and S2), the smoothness parameter ν must be fixed at 1 because
of the relationship α= ν + d=2. The strength of this SPDE technique enables us to quantify
the level of non-stationarity by employing spatial basis representations for both κ and τ (i.e.
these quantities are constants in a stationary field). With a focus on the calibration, let κM.s, θ/

and τM.s, θ/ be the scale and precision parameters in an SPDE model used to approximate the
model outputs. To obtain basic identifiability, κM.s, θ/ and τM.s, θ/ are taken to be positive,
and their logarithm can be decomposed as

log{κM.s, θj/}=
Nκ∑
z=1

κM
z .θj/ψz.s/,

log{τM.s, θj/}=
Nτ∑
z=1

τM
z .θj/ψz.s/, j =1, : : : , r:

Each basis function is evaluated at output cells and observed locations. The coefficients {κM
z }

and {τM
z } represent local variances and correlation ranges (Bolin and Lindgren, 2011; Lindgren

et al., 2011; Fuglstad et al., 2015). For simplicity, we call these coefficients ‘SPDE parameters’
in the calibration. In the next section we introduce how to incorporate the SPDE parameters in
calibration to enhance the prediction accuracy.

2.3. Combining stochastic partial differential equation modelling and calibration
A reduced rank approach was often used to ease the computational issue in large spatial data
sets (Banerjee et al., 2008; Cressie and Johannesson, 2008; Furrer and Sain, 2009; Katzfuss and
Cressie, 2011). To reduce and summarize a spatial field properly, both global and local scale
dependences need to be well captured and represented. To do so, a two-steps approximation
was developed by combining the reduced rank representation and sparse matrix techniques, to
account for global and local structures respectively (Stein, 2007; Sang and Huang, 2012). We
follow the same idea of using a reduced rank representation to capture global scale variability
(described in Section 2.1), whereas, instead of tapering the covariance matrix into a sparse
matrix, we use the INLA–SPDE technique to represent small-scale variability. In this section
we describe the details of our extension by including the SPDE-defined scale and precision
parameters in the Bayesian calibration.

As {κM
z .θ/} and {τM

z .θ/} can quantify the non-stationarity and derivative information in the
spatial process, we now include these two types of coefficient in our technique (combined with
{cM

z .θ/} in the previous section, and vectorized all coefficients as a scalar). Then our approach
represents the observations and model input–output relationship as
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yF.s1/, : : : , yF.sn/
transform−→ cF

1 , : : : , cF
Ny

,κF
1 , : : : ,κF

Nκ
, τF

1 , : : : , τF
Nτ

,

η.s1, θ1/, : : : , η.sn, θ1/
transform−→ cM

1 .θ1/, : : : , cM
Ny

.θ1/,κM
1 .θ1/, : : : ,κM

Nκ
.θ1/, τM

1 .θ1/, : : : , τM
Nτ

.θ1/,

:::

η.s1, θr/, : : : , η.sn, θr/
transform−→ cM

1 .θr/, : : : , cM
Ny

.θr/,κM
1 .θr/, : : : ,κM

Nκ
.θr/, τM

1 .θr/, : : : , τM
Nτ

.θr/

where Ny +Nκ+Nτ <<n. The aim is to combine the SPDE parameters as non-stationary infor-
mation for the implementation of the calibration algorithm, and to model all coefficients jointly
with the GP assumption. We also assume that the three types of coefficient are independent. To
describe the formulation of the design matrix, let {z1, z2, z3|z1 = 1, : : : , Ny; z2 = 1, : : : , Nκ; z3 =
1, : : : , Nτ} be the indices that are used to represent each triplet of coefficients. The calibration
formulation is hence ⎛

⎝ cF
z1

κF
z2

τF
z3

⎞
⎠=

⎛
⎝ cM

z1
.θ/

κM
z2

.θ/

τM
z3

.θ/

⎞
⎠+

(
cδz1

κδz2

τδz3

)
+
(

cεz1
κεz2
τ εz3

)
:

Thus there are .Ny +Nκ+Nτ /-blocks of coefficients corresponding to each combination of
θj, j = 1: : : , r, in the covariance matrix. The GP assumption is imposed on each coefficient
.cM

z1,j,κM
z2,j, τM

z3,j/T with mean 0 and covariance function

cov{.cM
z1

.θ/,κM
z2

.θ/, τM
z3

.θ//T, .cM
z′

1
.θ′/,κM

z′
2
.θ′/, τM

z′
3

.θ′//T}= 1
λη

3∏
i=1

Iziz
′
i

q∏
k=1

ρ
4.θk−θ′

k/2

ηk ,

where Iziz
′
i
= 1 if zi = z′

i and Iziz
′
i
= 0 otherwise. In other words, these three types of coefficient

{cM
z1

,κM
z2

, τM
z3

} have a joint multivariate normal prior distribution with mean 0, and a covariance
structure forming a block diagonal matrix:

⎛
⎝ cM

z1

κM
z2

τM
z3

⎞
⎠∼N

⎡
⎢⎣0,

⎛
⎜⎝

cov{cM
z1

.θ/, cM
z′

1
.θ′/} 0 0

0 cov{κM
z2

.θ/,κM
z′

2
.θ′/} 0

0 0 cov{τM
z3

.θ/, τM
z′

3
.θ′/}

⎞
⎟⎠
⎤
⎥⎦:

The elements in each block are also block diagonal matrices. The model discrepancy term in
the functional space follows a GP assumption defined in equation (4). All the prior assumptions
that were discussed in the previous section remain unchanged. Thus the sampling likelihood
(5) and the posterior distribution (6) still hold in this case. Overall, we decompose the model
outputs into a basis via the coefficients {cM}, and estimate the SPDE parameters {κM, τM}
in the latent field through a regression onto these basis functions. We are essentially fitting a
GP model with {cM} for the regression mean structure and {κM, τM} for the parameters of a
Matérn covariance function.

2.4. Guidance for the number of basis functions
In real applications, we often do not know whether the calibrated values work until actually
performing a validation. It can be computationally challenging to find the optimized orders
for the combination of Ny, Nκ and Nτ . Similarly to most truncated basis representations, we
choose the number of basis functions post hoc. We provide the following model selection guide-
lines.
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(a) The basis representation for the mean structure of model outputs plays a dominant role
in the algorithm. Typically we cannot expect to calibrate a global process only through a
local structure. Therefore Ny usually needs to be greater than Nκ+Nτ .

(b) Calibration with only one of the coefficients κ or τ cannot improve the analysis. The
reason is the fact that κ and τ represent a spatial process jointly being tacitly assumed.
Recall that the Matérn function is controlled by the smoothness parameter ν, the scale
parameter κ and the precision parameter τ . The parameter ν is fixed by α= ν+ d=2 in
connection with the SPDE; thus the approximated spatial process depends on κ and τ
jointly. Both κ and τ need to be included to reflect the full variation in the spatial field.

In this paper we use spherical harmonics (SHs) as our primary investigation. The SHs repre-
sent the wave features at different scales on the sphere (Bolin and Lindgren, 2011; Jun and Stein,
2008). For calibration, it seems unnecessary in general to approximate the spatial processes with
very high order expansions of SHs to fit each run of model output best. The main requirement
is to extract sufficient and meaningful information about the calibration parameters from the
variations in the SH coefficients that could be attributed to variations in the inputs. To ensure
that this requirement is met, a simple validation is to increase the basis number and to recali-
brate the model. In case the results have no statistically significant effects, then the number is
sufficiently large. Muir and Tkalčić (2015) utilized the corrected Akaike information criterion
AIC to choose an optimal maximum order of expansion for irregular data on the sphere in a hi-
erarchical Bayesian setting. The results show that the third–fifth orders of expansion in SHs are
generally a turning point from fast to slow reduction in AIC in terms of balancing explanatory
power with simplicity (although not the smallest AIC). In all these approaches, the choice of
the number of basis vectors is currently post hoc. We reckon that the third or fourth order of SH
transform for capturing large-scale variability, along with a lower order of SPDE non-stationary
information to account for local structure, as a good start in practical application.

3. Simulation study: non-stationary field

To illustrate the methodology, this synthetic example simulates a non-stationary field on the
sphere, with an anisotropic property (the spatial correlation depends on latitude), to demonstrate
how including the parameters in the SPDE can enhance the GP calibration in such situations.
We illustrate how the parameters in an SPDE technique can be incorporated in our calibration
algorithm to model non-stationarity over a spherical domain. With n=10×10 regularly spaced
locations in latitude L and longitude l, and r =50 computer runs according to a maximin Latin
hypercube design for the calibration inputs, the function with three calibration parameters
(q=3) is set to

f.s̃, θ/= .0:5s2
1 +θ1s2s3/

{
θ2s2 if L>π=2,
θ3 exp.−s3 − s1/ if L�π=2,

.θ1, θ2, θ3/∈ [0, 1]3, .8/

where the true values for .θ1, θ2, θ3/ are set to (0.5, 0.2, 0.8) and .s1, s2, s3/ = .cos.l/ sin.L/,
sin.l/ sin.L/, cos.L// are spherical co-ordinates. We create a non-stationary spatial field by intro-
ducing different structures in the northern and southern hemispheres, where θ1 is a global
calibration parameter, and .θ2, θ3/ are local variates. In this example the local structures are
designed to be larger than the global structure: exp.−s3 − s1/ has stronger variation than s2, and
both of them have a larger variation than s2s3 (see the magnitude of variation in each component
from Fig. 1).

First, we perform the spherical harmonics transform (SHT) onto observations yF and each
computer run ηj, j =1, : : : , 50, and then carry out the calibration on the coefficients. In total, we
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estimate 13 models with different numbers of expansion order. The results of using the fourth–
seventh orders of the SHT are shown in the first part of Table 1 (strategies A–D). We can see that
the global calibration parameter θ1 is estimated well. However, even though the convergence
of an MCMC chain can be established for θ2 and θ3, the posterior means are underestimated.
According to the root-mean-square error (RMSE) between assumed and predicted observations,
which can be written as

RMSE=

√[
n∑

i=1
{f.si, θÅ/−f.si, θpost/}2

n

]
,

an increase in the expansion order cannot improve the results. This underestimation can be
viewed as a deficiency to capture local variations through a global mean structure: the variation
that is created by these two parameters will be obscured and distorted by the variation from θ1.

To understand the role of the SPDE parameters in the calibration, we then perform a calibra-
tion using only the coefficients {κM, τM}. Under the same priors and algorithm, the posterior
mean and SD of the first three orders of the expansion for κM and τM are shown in the second
part of Table 1 (strategies E–G). Even though the calibration does not fully succeed (and should
not without matching original outputs to observations but only SPDE information), the result
in the second-order expansion for κM and τM seems informative as the posterior modes are
close to the true values. The first two orders of the expansion surface for κF and τF for the
observations are shown in Fig. 2. It is difficult to interpret the features of κ.s/ and τ .s/ directly.
However, from Figs 2(c) and 2(d) we can see that a strong north-east–south-west flow in κF.s/

matches the pattern in Figs 1(b) and 1(c), and a high anticorrelation between τF.s/ (inverse
precision) and the yF-surface.

For the next step, we infer {cM,κM, τM} jointly with the GP model. We combined the co-
efficients in strategies A–C (coefficients for the mean structure) and strategies E and F (co-
efficients for the SPDE parameters). The results are presented in the third part of Table 1.
We can see that, with the SPDE information included, we achieve an improvement in the

Table 1. Posterior mean and SD for .θ1, θ2, θ3/ in function (8), RMSE and number of coefficients (right-hand
column) under different orders of SHT for {η,κ, τ} per model run†

Strategy η κ τ θ1 (=0.5) θ2 (=0.2) θ3 (=0.8) RMSE Ny +Nκ
+Nτ

A 4 — — 0.505 (0.050) 0.188 (0.048) 0.762 (0.038) 92 15
B 5 — — 0.498 (0.053) 0.179 (0.062) 0.746 (0.050) 132 21
C 6 — — 0.477 (0.062) 0.166 (0.079) 0.705 (0.069) 237 28
D 7 — — 0.488 (0.112) 0.198 (0.127) 0.695 (0.119) 257 36

E — 1 1 0.579 (0.158) 0.148 (0.068) 0.620 (0.200) 431 6
F — 2 2 0.560 (0.097) 0.189 (0.078) 0.740 (0.089) 145 12
G — 3 3 0.785 (0.078) 0.442 (0.155) 0.858 (0.054) 433 20

H 4 1 1 0.452 (0.097) 0.071 (0.049) 0.495 (0.037) 755 21
I 5 1 1 0.495 (0.044) 0.133 (0.049) 0.498 (0.032) 737 27
J 6 1 1 0.356 (0.050) 0.135 (0.052) 0.686 (0.119) 322 34
K 4 2 2 0.553 (0.068) 0.225 (0.108) 0.771 (0.109) 80 27
L 5 2 2 0.529 (0.068) 0.179 (0.107) 0.794 (0.098) 28 33
M 6 2 2 0.537 (0.066) 0.171 (0.110) 0.789 (0.083) 39 40

†RMSE was multiplied by 103 to illustrate the magnitude.
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calibration by combining local structure with a global process. For example, strategies C and K
have a similar number of coefficients, but the combination with the SPDE increases the estimated
accuracy in θ2 and θ3. The similar case of strategies D and L also supports the use of SPDE
information. Strategy L uses a smaller number of coefficients, while achieving an improvement
in terms of increased accuracy in θ3 and reduced RMSE. Nevertheless, only in the case of the
second-order expansion do the SPDE parameters help; the first-order expansion cannot achieve
a good result in this example. This demonstrates that the non-stationarity is rather complex.
From these findings we thus acknowledge that the SPDE technique enables us to identify the
local feature from the global spatial process in the calibration. Therefore we highlight that, when
we cannot make an improvement in the accuracy of estimation by increasing the basis number
into the mean structure, the SPDE technique can serve as a valuable alternative.

We provide more illustrations of the flexibility of our approach under various situations:

(a) calibration with irregularly spaced outputs over the plane by using a B-spline basis;
(b) investigation of the connection between the accuracy of calibration and the number of

computer runs r, and between the accuracy of calibration and the orders and modes of
SHs;

(c) comparison of our approach and the empirical orthogonal functions approach and orig-
inal Kennedy and O’Hagan (2001) framework, in the on-line supplemental material for
the interested reader.

4. Application to the ‘Whole atmosphere community climate model’ experiments

A series of WACCM runs with the component set prescribed sea ice, data ocean and specified
chemistry, with horizontal resolution 1:9◦ × 2:5◦ and 66 vertical levels were simulated from
January 1st, 2000. The GW parameterizations in the WACCM depend on four inputs.

(a) cbias (θ1 ∈ [−5, 5]): anisotropy of the source spectrum, e.g. −5 m s−1; the spectrum has a
stronger westward component, with the centre of the spectrum at 5 m s−1 westward. Note
that the default simulation in the WACCM is isotropic (i.e. cbias = 0). An anisotropic
GW source has been long reckoned to have potential to improve the middle atmosphere
circulation compared with an isotropic source (Medvedev et al., 1998; Hamilton, 2013;
Chunchuzov et al., 2015).

(b) effgw (θ2 ∈ [0:05, 0:3]), the efficiency factor, measures the GW intermittency.
(c) flatgw (θ3 ∈ [1, 3]) controls the momentum flux of the parameterized waves at the launch

levels.
(d) launlvl (θ4 ∈ [50, 700]) are the launch levels of the waves.

The values of GW inputs θ are generated by a maximin Latin hypercube design (but scaled to
be [0, 1]4). We simulated r =100 runs for 2 months. The first month was discarded as a spin-up
period (Eyring et al., 2016). Each output was computed over 96 latitudes and 144 longitudes,
so the total output size is n× r =96×144 ×100=1382400. We perform the calibration for the
WACCM, either against synthetic (but with added non-stationary observation errors) or real
observations, to validate our approach fully.

4.1. Calibration against synthetic observations
4.1.1. Model set-up
To illustrate our methodology, we compare the zonal wind simulations η.si, θj/, where si, i =
1, : : : , 96×144, are the latitude and longitude on the spherical domain, and j =1, : : : , 100 is the
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(a)

(b)

Fig. 3. (a) Zonal wind standard output ηÅ and (b) assumed observed surface with noise yF and discrepancy
added to the zonal wind standard output (30 mb, February 2000)

index of the runs, with the WACCM’s standard outputs (i.e. default simulation), instead of actual
observations. Therefore we know the true GW parameter values and can validate our method.
Let ηÅ.si/ be the zonal wind surface from WACCM standard output. To account for possible ob-
servation error and a lack of physics in the model (discrepancy), and thus to evaluate the robust-
ness of our method, we add smooth noise to ηÅ.si/ by assuming that the observations are given by

yF.s̃i/=ηÅ.s̃i/+ σηÅ

5
s1 + 1

2
s2s3,
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where s̃i = .s1, s2, s3/ are the spherical co-ordinates, and σηÅ = 11:14 is the SD of ηÅ. Figs 3(a)
and 3(b) show the zonal wind surfaces from standard outputs and synthetic observations at 30
mb, February 2000.

As for the computational issue, in practice it is difficult to deal with a size of model output
beyond moderately large (say of the order of 2000 responses). Here we have r = 100 computer
runs; therefore we seek to decompose each model output with about 20 coefficients. We represent
observations and model discrepancies by using third- and fourth-order SHTs for model outputs
and observations respectively. This allows enough flexibility. We report the two strategies A with
or B without including first-order SPDE non-stationary information. We also report two other
strategies that use five (strategy C) or 10 (strategy D) PCs (with 95.8% and 97.9% respectively of
the variation explained) to decompose the model outputs and observations (see the algorithm
in the on-line supplemental material).

4.1.2. Prediction accuracy
The posterior modes of each strategy are shown in Table 2. Both strategies A and B calibrate
θ2 well and slightly overestimate θ4. The inclusion of SPDE parameters in strategies A versus
B not only increases the accuracy of the posterior mode for θ1 but also estimates very closely
θ3, which is a difficult task as the true value lies on the lower bound. The quantification of the
anisotropic velocity in a large spatial process is a difficult problem (Large et al., 2001; Lauritzen
et al., 2015). The improvement in accuracy of the estimation of θ1 confirms the value of using
the SPDE technique in the calibration since the non-stationarity allows the amount of flexibility
that is required to identify more clearly the value of θ1.

Unfortunately, the MCMC runs do not converge for strategies C and D; hence their posterior
modes are uninterpretable (but we report them nevertheless). This result can be expected. Our
GW parameterization aims to reduce zonal wind bias at the tropics associated with the QBO;
however, the principal mode of variability in our model outputs occurs across the northern
hemisphere (in East Asia to be precise), where the influence of the GW is indirect (see the next
section for further discussion in comparison with real observations). The PC decomposition will
focus on the variability in the northern hemisphere compared with the tropics. Recent studies
suggest that a PC-based approach tends to cause a ‘terminal case analysis’ in climate modelling
(Salter et al., 2018), which means that there is no set of parameters that can allow the model
to mimic reality. For this reason the PC-based approach is not appropriate for our calibration
setting.

Fig. 4 shows a concrete example of such lack of convergence in a synthetic example (see
the on-line supplementary material). This is a comparison of the MCMC sample paths of the

Table 2. Posterior mode of GW parameters on the rescaled [0, 1] range†

Strategy cbias effgw flatgw launlvl
(θÅ1 =0.5) (θÅ2 =0.56) (θÅ3 =0) (θÅ4 =0.2308)

A (SH—non-stationary SPDE) 0.435 0.547 0.060 0.276
B (SH—stationary SPDE) 0.361 0.561 0.281 0.282
C (5 PCs) 0.538 0.396 0.741 0.523
D (10 PCs) 0.639 0.082 0.466 0.908

†The MCMC algorithm did not converge in cases C and D, so these estimates (in italics) are
unreliable. Valid calibrations are highlighted in bold.
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(a)

(b)

Fig. 4. MCMC paths of θ over the design space [0, 1]3 for our approach and PC-based algorithms (a
synthetic case is given in the on-line supplementary material) ( , true values): (a) second SHT (nine
coefficients); (b) nine empirical orthogonal functions representation

calibration parameters by second-order SHs (nine coefficients) and nine-PCs representation.
We can see that, for all calibration parameters in the SHs approach, convergence occurred after
roughly 500 iterations, whereas chains do not converge in the PC approach.

Figs 5(a) and 5(b) show the boxplots of the marginal posterior distributions for the ρηs for
strategies A and B, which control the dependence strength in each pair of θs in the GP model.
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(a) (c)

(b) (d)

Fig. 5. (a), (b) Boxplots of the marginal posterior distribution for correlation parameters ρη for strategies A
and B respectively and (c), (d) marginals for the posterior distribution of the GW parameters θ for strategies
A and B respectively, , true values (30 mb, February 2000)

The posterior density of ρ4 converges to 1 which indicates a very weakly significant effect for θ4.
The marginal posterior densities for each θ are displayed in Figs 5(c) and 5(d). Our approach
provides a good compromise between computational feasibility and fidelity to the data by using
only parsimonious representations. The results suggest that our technique on calibration of
global scale outputs is effective.

4.2. Calibration against real observations
4.2.1. Posterior sampling
The final step is to carry out the calibration against real observations. We use zonal wind data
obtained from the European Centre for Medium-Range Weather Forecasts 40-year reanalysis
data archive ERA. We focus on the altitude of 1 mb, as the outputs in low altitudes are less
sensitive to GW parameterizations and match the observations well already. Figs 6(a) and 6(b)
show the ERA observations and zonal wind surfaces from standard outputs at 1 mb, Febru-
ary 2000. Under the same settings as described in the previous section, Fig. 6(c) shows the
MCMC paths for three chains, with 6000 iterations, corresponding respectively to the calibration
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Fig. 7. Density of the posterior calibration parameters for zonal wind simulation (1 mb, February 2000)

parameters. The convergence of the MCMC chain can be established for the parameters θ2, θ3
and θ4, with posterior modes 0.107 (SD = 0.051), 0.081 (SD = 0.029) and 0.339 (SD = 0.018)
in the [0,1] scale respectively. The posterior mode of θ1 lies within the upper bound. We then use
posterior modes for these paths, collected as input values for the validation of the WACCM.
The calibrated output displayed in Fig. 6(d) shows an RMSE of 18.15, which is a percentage
improvement of 14.99% over the standard output (the RMSE between ERA observations and
standard output is 21.35).

The resulting histograms for the calibration parameters, with the first 1000 iterations dropped
as they are reckoned to be burn-in, are shown in Fig. 7. As expected from the MCMC plot,
a normal distribution can be established for θ2, θ3 and θ4. The distribution of θ1 shown is
skewed against the upper bound. It means that the possible calibrated value may lie outside
the boundary. Since θ1 represents the anisotropic velocity of zonal wind (the model default
is assumed to be isotropic), the results suggest that we would need a more eastward compo-
nent. It seems that this is a spurious effect of the simplicity in the parameterization. Indeed,
to avoid losing the westward components and to acknowledge the physical reality, it may be
helpful to have a ‘bimodal’ spectrum (Arfeuille et al., 2013; Zhu et al., 2017), with one peak
in the eastward direction and another in the westward, and these two components do not have
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to be the same. Indeed, uneven amplitudes of the QBO easterly and westerly phases have of-
ten been observed in previous studies (Naujokat, 1986; Garcia et al., 1997; Ern et al., 2008).
GW schemes are currently under development within the National Center for Atmospheric
Research WACCM working group to improve the representation of the QBO and to help to
fix the cold pole problem (Garcia et al., 2017). Further development will enable us to have
more flexible GWs schemes, but it is beyond the scope of the present setting for the climate
simulation.

4.2.2. Model discrepancy and uncertainty
To assess the model uncertainty, Fig. 8(a) shows the zonal means calculated over every 5◦ belt
of observations (black full curve), standard outputs (black broken curve) and each run of model
output (grey dotted curves): note that the zonal means over the tropics are high compared with
the observations and standard outputs. The input value of θ3 in the standard output is at the
lower border of the parameter range; this may produce relatively extreme behaviour over the
tropics in our model runs. Fig. 8(b) represents the grid-by-grid SDs map across model out-
puts. We can see that the spatial process is clearly anisotropic and highly latitude dependent;
the uncertainties are concentrated over the northern hemisphere, and little significant variabil-
ity can be found over the southern hemisphere. Fig. 8(c) compares the differences between
observations and mean structure of model outputs in each cell (with respect to 100 Latin hy-
percube designs), i.e. δinitial.s/ = yF.s/ − η̄.s, θ/, where η̄.s/ are the output means over space.
Fig. 8(c) provides potential features of model discrepancy over space (albeit not the true dis-
crepancy). As expected, the model tends to overestimate the values over the tropics, which
matches the pattern in Fig. 8(a). Besides, this surface seems to match the pattern in Fig. 8(b).
The largest model bias (apart from the tropics) and variability both occur over north-east Asia
and the North Pole. Fig. 8(d) shows the posterior mean discrepancies surface in the sense of
δÅ.s/=yR.s/−η.s, θÅ/. Our calibration reduces the bias (i.e. overestimation) over the tropics,
as well as bias (i.e. underestimation) over the North Pole, whereas the bias over north-east Asia
remains.

4.2.3. Validation
We use the mode from each posterior distribution to simulate 5 years (two QBO cycles) of zonal
wind output. Fig. 9(a) shows monthly RMSEs at 1 mb globally, from 2000 to 2004. The overall
averaged RMSE for the standard and calibrated outputs are 24.51 and 22.99 respectively, which
are a small improvement. Indeed, our inertial GW scheme is designed to reduce the zonal wind
bias over the tropics; we should not expect that our calibration will improve model simulations
globally. We thus investigate RMSEs over the tropics over the same period. The RMSE trends are
shown in Fig. 9(b). The overall averaged RMSE over the tropics for the standard and calibrated
outputs are 26.64 and 17.87 respectively. Therefore the improvement is more significant over the
tropics, with percentage improvement 32.9%. Simulations by our calibrated outputs outperform
the standard code in 51 months out of the 60 months. The calibration of the WACCM with
real observations over the whole output domain (i.e. including across altitudes) constitutes
another level of complexity that needs joint scientific and statistical expertise. It is currently
under investigation but is beyond the scope of this paper. Indeed, observations are scarce at
these altitudes and show features that require specific understanding of the upper atmosphere
dynamics before being used for calibration, and over many years of simulation for an adequate
comparison.
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Fig. 9. Monthly RMSE trends between the ERA observations and standard outputs ( ) or calibrated
outputs ( ), from 2000 to 2004: (a) global RMSEs; (b) tropical RMSEs

5. Conclusion and discussion

Our approach improved the calibration of large-scale computer model outputs distributed over
space, parsimoniously, by using bases representations for the mean structures of the spatial
surfaces. In addition, the INLA–SPDE approach was used to decompose its parameters char-
acterizing non-stationarity over the same bases to improve calibration. The synthetic and real
examples confirm the ability of our approach to perform calibration efficiently and accurately.
Our method was inspired by the wavelets method of Bayarri et al. (2007), but with a different
type of outputs: spatial versus time series. We can expect that the spherical wavelet decompo-
sition may also be a possible alternative basis representation on the spatial domain, whenever
appropriate (e.g. for sharp variations).



Calibration of a Climate Model 75

Another advantage of using the SH basis, compared with data-driven bases such as PCs, is that
sequential design is allowed (Beck and Guillas, 2016), because the basis elements will not change,
and model runs are obtained at the same grids or scattered locations. In this study we illustrate
our technique on a specific horizontal output from the WACCM simulator. The SHT of model
outputs can also be extended to time varying processes. As noted by Jones (1963), if a random
field on a sphere varies with time, the representation becomes η.s, t/=Σ∞

k=0Σ
k
h=−kck,h.t/ψk,h.s/,

where ck,h.t/ is an ordinary one-dimensional stochastic process. The set of all ck,h.t/ form
an infinite dimensional stochastic process. Theoretically we can represent model outputs in
space–time settings with such representations. Nevertheless, in climate or chemistry–transport
simulations, we often encounter not only outputs in time and horizontal resolution, but also in
vertical resolution. Therefore extensions to four-dimensional correlations are needed, but they
must maintain the computational tractability.

In our approach the covariance matrix is formulated as a block diagonal structure. We could
relax this assumption and then adopt the block composite likelihood approach to accelerate the
algorithm (Chang, Haran, Olson and Keller, 2015). Unfortunately, this approach covers only
the stationary case (though it could be extended). Our approach naturally and efficiently models
non-stationarity in space. Furthermore, there are cases where our approach is computationally
more efficient than that of Chang, Haran, Olson and Keller (2015). Indeed, if m is large, their
computational cost is about O.ΣB

i=1m3
i /, where ΣB

i=1mi =m (depends on the number and size of
blocks mi), whereas our cost is O.N3

y r3/, which is lower in many, but not all, applications. Since
our climate experiment involves direct input–output projection, another potential extension of
our approach is to combine recent developments in the Bayesian treed calibration technique,
which partitions input space into subregions where our reduced rank approach can be applied,
to accelerate the calibration further (Karagiannis et al., 2017; Konomi et al., 2017).
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