43,915 research outputs found

    Alignment microscope for rotating laser scanner

    Get PDF
    Microscopic assembly for alignment of rotary laser focuses on small film area along scan line at oblique angle. Suitable choice of angle and location of optical components project laser beam line as X coordinate reticle. Coordination with horizontal recticle line included microscope facilitates Y coordinate position indexing

    Binary Decay of Light Nuclear Systems

    Full text link
    A review of the characteristic features found in fully energy-damped, binarydecay yields from light heavy-ion reactions with 20≤Atarget+Aprojectile≤8020\leq A_{target} + A_{projectile}\leq 80 is presented. The different aspects of these yields that have been used to support models of compound-nucleus (CN) fission and deep-inelastic dinucleus orbiting are highlighted. Cross section calculations based on the statistical phase space at different stages of the reaction are presented and compared to the experimental results. Although the statistical models are found to reproduce most of the observed experimental behaviors, an additional reaction component corresponding to a heavy-ion resonance or orbiting mechanism is also evident in certain systems. The system dependence of this second component is discussed. The extent to which the binary yields in very light systems (ACN≤32)(A_{CN} \leq 32) can be viewed as resulting from a fusion-fission mechanism is explored. A number of unresolved questions, such as whether the different observed behaviors reflect characteristically different reaction times, are discussed.Comment: 79 pages REVTeX file, 39 ps Figures included - to be publihed in Physics Report

    A New Multi-Resource cumulatives Constraint with Negative Heights

    Get PDF
    This paper presents a new cumulatives constraint which generalizes the original cumulative constraint in different ways. The two most important aspects consist in permitting multiple cumulative resources as well as negative heights for the resource consumption of the tasks. This allows modeling in an easy way new scheduling and planning problems. The introduction of negative heights has forced us to come up with new propagation algorithms and to revisit existing ones. The first propagation algorithm is derived from an idea called sweep which is extensively used in computational geometry; the second algorithm is based on a combination of sweep and constructive disjunction, while the last is a generalization of task intervals to this new context. A real-life timetabling problem originally motivated this constraint which was implemented within the SICStus finite domain solver and evaluated against different problem patterns

    Entrance-channel Mass-asymmetry Dependence of Compound-nucleus Formation Time in Light Heavy-ion Reactions

    Get PDF
    The entrance-channel mass-asymmetry dependence of the compound nucleus formation time in light heavy-ion reactions has been investigated within the framework of semiclassical dissipative collision models. the model calculations have been succesfully applied to the formation of the 38^{38}Ar compound nucleus as populated via the 9^{9}Be+29^{29}Si, 11^{11}B+27^{27}Al, 12^{12}C+26^{26}Mg and 19^{19}F+19^{19}F entrance channels. The shape evolution of several other light composite systems appears to be consistent with the so-called "Fusion Inhibition Factor" which has been experimentally observed. As found previously in more massive systems for the fusion-evaporation process, the entrance-channel mass-asymmetry degree of freedom appears to determine the competition between the different mechanisms as well as the time scales involved.Comment: 12 pages, 3 Figures available upon request, Submitted at Phys. Rev.

    A Descriptive Study of the Population Dynamics of Adult \u3ci\u3eDiabrotica Virgifera Virgifera\u3c/i\u3e (Coleoptera: Chrysomelidae) in Artificially Infested Corn Fields

    Get PDF
    The influence of corn plant phenology on the dynamics of adult western corn rootworm, Diabrotica virgifera virgifera, populations was studied during 1988 and 1989 in com fields artificially infested with eggs. Fifty percent of adult emergence from the soil occurred by day 194 in 1988 and day 203 in 1989. In both years, adult emergence was synchronized with corn flowering, eggs were recovered in soil samples approximately four days after reproductive females were first observed in the population, and oviposition was essentially complete about 25 days after it began. The number of reproductive female beetle-days accumulating per m2 was similar in both years. Approximately two times as many eggs were laid in 1988 (1239 eggs 1m2) as in 1989 (590 eggs 1m2). The difference in egg density may have been caused by differences among years in the temporal synchrony of reproductive beetles with flowering corn. Daily survival rates of adults were high while corn was flowering; exhibited a gradual decline during grain filling; and decreased rapidly during the grain drying stage

    The 3-Dimensional Structure of HH 32 from GMOS IFU Spetroscopy

    Full text link
    We present new high resolution spectroscopic observations of the Herbig-Haro object HH 32 from System Verification observations made with the GMOS IFU at Gemini North Observatory. The 3D spectral data covers a 8''.7 x 5''.85 spatial field and 4820 - 7040 Angstrom spectral region centered on the HH~32 A knot complex. We show the position-dependent line profiles and radial velocity channel maps of the Halpha line, as well as line ratio velocity channel maps of [OIII]5007/Halpha, [OI]6300/Halpha, [NII]6583/Halpha, [SII](6716+6730)/Halpha and [SII]6716/6730. We find that the line emission and the line ratios vary significantly on spatial scales of ~1'' and over velocities of ~50 km/s. A ``3/2-D'' bow shock model is qualitatively successful at reproducing the general features of the radial velocity channel maps, but it does not show the same complexity as the data and it fails to reproduce the line ratios in our high spatial resolution maps. The observations of HH 32 A show two or three superimposed bow shocks with separations of ~3'', which we interpret as evidence of a line of sight superposition of two or three working surfaces located along the redshifted body of the HH 32 outflow.Comment: Accepted for Publication in the Astronomical Journal (January 2004

    Magnetic loop emergence within a granule

    Full text link
    We investigate the temporal evolution of magnetic flux emerging within a granule in the quiet-Sun internetwork at disk center. We combined IR spectropolarimetry performed in two Fe I lines at 1565 nm with speckle-reconstructed G-band imaging. We determined the magnetic field parameters by a LTE inversion of the full Stokes vector using the SIR code, and followed their evolution in time. To interpret the observations, we created a geometrical model of a rising loop in 3D. The relevant parameters of the loop were matched to the observations where possible. We then synthesized spectra from the 3D model for a comparison to the observations. We found signatures of magnetic flux emergence within a growing granule. In the early phases, a horizontal magnetic field with a distinct linear polarization signal dominated the emerging flux. Later on, two patches of opposite circular polarization signal appeared symmetrically on either side of the linear polarization patch, indicating a small loop-like structure. The mean magnetic flux density of this loop was roughly 450 G, with a total magnetic flux of around 3x10^17 Mx. During the ~12 min episode of loop occurrence, the spatial extent of the loop increased from about 1 to 2 arcsec. The middle part of the appearing feature was blueshifted during its occurrence, supporting the scenario of an emerging loop. The temporal evolution of the observed spectra is reproduced to first order by the spectra derived from the geometrical model. The observed event can be explained as a case of flux emergence in the shape of a small-scale loop.Comment: 10 pages, 13 figures; accepted for Astronomy and Astrophysics; ps and eps figures in full resolution are available at http://www.astro.sk/~koza/figures/aa2009_loop

    Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems

    Get PDF
    An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the light-particle evaporation from the compound nucleus in statistical-model calculations. The method of the phase-space integrations for the binary-decay is an extension of the usual Hauser-Feshbach formalism to be applied to the mass-symmetric fission part. The EHFM calculations include ground-state binding energies and discrete levels in the low excitation-energy regions which are essential for an accurate evaluation of the phase-space integrations of the complex-fragment emission (fission). In the present calculations, EHFM is applied to the first-chance binary-decay by assuming that the second-chance fission decay is negligible. In a similar manner to the description of the fusion-evaporation process, the usual cascade calculation of light-particle emission from the highly excited complex fragments is applied. This complete calculation is then defined as EHFM+CASCADE. Calculated quantities such as charge-, mass- and kinetic-energy distributions are compared with inclusive and/or exclusive data for the 32^{32}S+24^{24}Mg and 35^{35}Cl+12^{12}C reactions which have been selected as typical examples. Finally, the missing charge distributions extracted from exclusive measurements are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be published
    • …
    corecore