944 research outputs found
Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers
For fifty years, cosmic-ray air showers have been detected by their radio
emission. We present the first laboratory measurements that validate
electrodynamics simulations used in air shower modeling. An experiment at SLAC
provides a beam test of radio-frequency (RF) radiation from charged particle
cascades in the presence of a magnetic field, a model system of a cosmic-ray
air shower. This experiment provides a suite of controlled laboratory
measurements to compare to particle-level simulations of RF emission, which are
relied upon in ultra-high-energy cosmic-ray air shower detection. We compare
simulations to data for intensity, linearity with magnetic field, angular
distribution, polarization, and spectral content. In particular, we confirm
modern predictions that the magnetically induced emission in a dielectric forms
a cone that peaks at the Cherenkov angle and show that the simulations
reproduce the data within systematic uncertainties.Comment: 5 pages, 7 figure
Development Toward a Ground-Based Interferometric Phased Array for Radio Detection of High Energy Neutrinos
The in-ice radio interferometric phased array technique for detection of high
energy neutrinos looks for Askaryan emission from neutrinos interacting in
large volumes of glacial ice, and is being developed as a way to achieve a low
energy threshold and a large effective volume at high energies. The technique
is based on coherently summing the impulsive Askaryan signal from multiple
antennas, which increases the signal-to-noise ratio for weak signals. We report
here on measurements and a simulation of thermal noise correlations between
nearby antennas, beamforming of impulsive signals, and a measurement of the
expected improvement in trigger efficiency through the phased array technique.
We also discuss the noise environment observed with an analog phased array at
Summit Station, Greenland, a possible site for an interferometric phased array
for radio detection of high energy neutrinos.Comment: 13 Pages, 14 Figure
The Origin of the Extragalactic Gamma-Ray Background and Implications for Dark-Matter Annihilation
The origin of the extragalactic -ray background (EGB) has been
debated for some time. { The EGB comprises the -ray emission from
resolved and unresolved extragalactic sources, such as blazars, star-forming
galaxies and radio galaxies, as well as radiation from truly diffuse
processes.} This letter focuses on the blazar source class, the most numerous
detected population, and presents an updated luminosity function and spectral
energy distribution model consistent with the blazar observations performed by
the {\it Fermi} Large Area Telescope (LAT). We show that blazars account for
50\,\% of the EGB photons (0.1\,GeV), and that {\it Fermi}-LAT
has already resolved 70\,\% of this contribution. Blazars, and in
particular low-luminosity hard-spectrum nearby sources like BL Lacs, are
responsible for most of the EGB emission above 100\,GeV. We find that the
extragalactic background light, which attenuates blazars' high-energy emission,
is responsible for the high-energy cut-off observed in the EGB spectrum.
Finally, we show that blazars, star-forming galaxies and radio galaxies can
naturally account for the amplitude and spectral shape of the background in the
0.1--820\,GeV range, leaving only modest room for other contributions. This
allows us to set competitive constraints on the dark-matter annihilation cross
section.Comment: On behalf of the Fermi-LAT collaboration. Contact authors: M. Ajello,
D. Gasparrini, M. Sanchez-Conde, G. Zaharijas, M. Gustafsson. Accepted for
publication on ApJ
A Hard X-ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR
We present results from sensitive, multi-epoch NuSTAR observations of the
late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation
to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The
nuclear region and ~ 20 off-nuclear point sources, including a previously
discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR
observations. The X-ray hardnesses and luminosities of the majority of the
point sources are consistent with hard X-ray sources resolved in the starburst
galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated
by intermediate accretion state black hole binaries and neutron star low-mass
X-ray binaries (Z-sources). We construct the X-ray binary luminosity function
(XLF) in the NuSTAR band for an extragalactic environment for the first time.
The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent
with previous measurements by Chandra at softer X-ray energies. The NuSTAR
integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also
seen in the starburst galaxies NGC253, NGC 3310 and NGC 3256. The NuSTAR
observations constrain any AGN to be either highly obscured or to have an
extremely low luminosity of 10 erg/s (10-30 keV), implying it
is emitting at a very low Eddington ratio. An X-ray point source consistent
with the location of the nuclear star cluster with an X-ray luminosity of a few
times 10 erg/s may be a low-luminosity AGN but is more consistent with
being an X-ray binary.Comment: Accepted for publication in ApJ (25 pages, 17 figures
SLAC T-510 experiment for radio emission from particle showers: Detailed simulation study and interpretation
Over the last several decades, radio detection of air showers has been widely used to detect ultra-high-energy cosmic rays. We developed an experiment under controlled laboratory conditions at SLAC with which we measured the radio-frequency radiation from a charged particle shower produced by bunches of electrons as primaries with known energy. The shower took place in a target made of High Density Polyethylene located in a strong magnetic field. The experiment was designed so that Askaryan and magnetically-induced components of the radio emission could be measured independently. At the same time, we performed a detailed simulation of this experiment to predict the radio signal using two microscopic formalisms, endpoint and ZHS. In this paper, we present the simulation scheme and make a comparison with data characteristics such as linearity with magnetic field and amplitude. The simulations agree with the measurements within uncertainties and present a good description of the data. In particular, reflections within the target that accounted for the largest systematic uncertainties are addressed. The prediction of the amplitude of Askaryan emission agrees with measurements to within 5% for the endpoint formalism and 11% for the ZHS formalism. The amplitudes of magnetically-induced emission agree to within 5% for the endpoint formalism and less than 1% for the ZHS formalism. The agreement of the absolute scale of emission gives confidence in state-of-the-art air shower simulations which are based on the applied formalisms
Expediting DECam multimessenger counterpart searches with convolutional neural networks
Searches for counterparts to multimessenger events with optical imagers use difference imaging to detect new transient sources. However, even with existing artifact-detection algorithms, this process simultaneously returns several classes of false positives: false detections from poor-quality image subtractions, false detections from low signal-to-noise images, and detections of preexisting variable sources. Currently, human visual inspection to remove the false positives is a central part of multimessenger follow-up observations, but when next generation gravitational wave and neutrino detectors come online and increase the rate of multimessenger events, the visual inspection process will be prohibitively expensive. We approach this problem with two convolutional neural networks operating on the difference imaging outputs. The first network focuses on removing false detections and demonstrates an accuracy of 92% on our data set. The second network focuses on sorting all real detections by the probability of being a transient source within a host galaxy and distinguishes between various classes of images that previously required additional human inspection. We find the number of images requiring human inspection will decrease by a factor of 1.5 using our approach alone and a factor of 3.6 using our approach in combination with existing algorithms, facilitating rapid multimessenger counterpart identification by the astronomical communit
Measurements, system response, and calibration of the SLAC T-510 experiment
The SLAC T-510 experiment provides the first beam-test of radio-frequency radiation from a charged particle cascade in the presence of a magnetic field (up to 970 G), a model system for radio-frequency emission from a cosmic-ray air shower. The primary purpose of this experiment is to provide a suite of controlled laboratory tests to compare to simulations based on particlelevel models of RF emission, making the calibrations of critical importance. We present system calibrations and analysis of the experiment from end to end. Measurements of the beam charge and two-dimensional magnetic field map are fed directly into the simulations using two different formalisms: ZHS and Endpoints. Simulated electric fields are forward-folded with the system response, allowing for direct comparisons of spectra and waveforms with the simulations
- …