335 research outputs found

    11-(4-Meth­oxy­phen­yl)-3,3-dimethyl-2,3,4,5,10,11-hexa­hydro-1H-dibenzo[b,e][1,4]diazepin-1-one monohydrate

    Get PDF
    In the title compound, C22H24N2O2·H2O, the co-crystallized water mol­ecule inter­acts with the N and O atoms of the mol­ecule through Ow—H⋯N, Ow—H⋯O(meth­yl) and N—H⋯Ow hydrogen-bonding inter­actions. These hydrogen bonds, along with the inter­molecular N—H⋯O=C hydrogen-bonding inter­actions, connect the mol­ecules into a three-dimensional network. The dihedral angle between the two aromatic rings is 65.46 (10)°

    A new scaffold of topoisomerase I inhibitors : Design, synthesis and biological evaluation

    Get PDF
    The synthesis of a new hexacyclic system was realized starting from tryptamines and exploiting as a key step a sequential Pd-catalyzed N-arylation/acylation reaction. Having topoisomerases as biological target and the campthotecins class as benchmark, the new scaffold was decorated with substituents having different polarity and tested as Topoisomerase I inhibitors

    Synthesis, Conformation and Antiproliferative Activity of Isothiazoloisoxazole 1,1-dioxides

    Get PDF
    Sixteen new isothiazoloisoxazole 1,1-dioxides, one new isothiazolotriazole and one new isothiazolopyrazole have been synthesised by using 1,3-dipolar cycloadditions to isothiazole 1,1-dioxides. One sub-set of these isothiazoloisoxazoles showed low μM activity against a human breast carcinoma cell line, whilst a second sub-set plus the isothiazolotriazole demonstrated an interesting restricted rotation of sterically hindered bridgehead substituents. A thiazete 1,1-dioxide produced from one of the isothiazole 1,1-dioxides underwent conversion into an unknown 1,2,3-oxathiazolin-2-oxide upon treatment with Lewis acids, but was inert towards 1,3-dipoles and cyclopropenones. Six supporting crystal structures are included

    Scope and Mechanistic Study of the Coupling Reaction of α,β-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways

    Get PDF
    The cationic ruthenium-hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4– (1) was found to be a highly effective catalyst for the intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds to give (Z)-selective tetrasubstituted olefin products. The analogous coupling reaction of cinnamides with electron-deficient olefins led to the oxidative coupling of two olefinic C–H bonds in forming (E)-selective diene products. The intramolecular version of the coupling reaction efficiently produced indene and bicyclic fulvene derivatives. The empirical rate law for the coupling reaction of ethyl cinnamate with propene was determined as follows: rate = k[1]1[propene]0[cinnamate]−1. A negligible deuterium kinetic isotope effect (kH/kD = 1.1 ± 0.1) was measured from both (E)-C6H5CH═C(CH3)CONHCH3 and (E)-C6H5CD═C(CH3)CONHCH3 with styrene. In contrast, a significant normal isotope effect (kH/kD = 1.7 ± 0.1) was observed from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene and styrene-d8. A pronounced carbon isotope effect was measured from the coupling reaction of (E)-C6H5CH═CHCO2Et with propene (13C(recovered)/13C(virgin) at Cβ = 1.019(6)), while a negligible carbon isotope effect (13C(recovered)/13C(virgin) at Cβ = 0.999(4)) was obtained from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene. Hammett plots from the correlation of para-substituted p-X-C6H4CH═CHCO2Et (X = OCH3, CH3, H, F, Cl, CO2Me, CF3) with propene and from the treatment of (E)-C6H5CH═CHCO2Et with a series of para-substituted styrenes p-Y-C6H4CH═CH2 (Y = OCH3, CH3, H, F, Cl, CF3) gave the positive slopes for both cases (ρ = +1.1 ± 0.1 and +1.5 ± 0.1, respectively). Eyring analysis of the coupling reaction led to the thermodynamic parameters, ΔH⧧ = 20 ± 2 kcal mol–1 and ΔS⧧ = −42 ± 5 eu. Two separate mechanistic pathways for the coupling reaction have been proposed on the basis of these kinetic and spectroscopic studies
    corecore