155 research outputs found

    From West to West

    Get PDF
    This paper deals with the journey of West African Ghanaians to the Western Hemisphere. For the second and third generation, the movement is from immigrant to national. I will explore the challenges and struggles that Seventh-day Adventist parents face in rearing their youth spiritually in an alien culture

    A Review on Active 3D Microstructures via Direct Laser Lithography

    Get PDF
    Direct laser lithography (DLL) is a key enabling technology for 3D constructs at the microscale and its potential is rapidly growing toward the development of active microstructures. The rationale of this work is based on the different involved methodology, which is referred as indirect, when passive microstructures become active through postprocessing steps, and direct, when active structures are directly obtained by fabricating microstructures with active materials or by introducing heterogeneous mechanical properties and specific design. An in‐depth analysis of both indirect and direct methods is provided. In particular, the wide range of materials and strategies involved in each method is reported, including advantages and disadvantages, as well as examples of fabricated structures and their applications. Finally, the different techniques are briefly summarized, and critically discussed by highlighting how the new synergies between DLL and active materials are opening completely new scenarios, in particular for sensing (e.g., mechanical) and actuation at the microscale

    Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array

    Get PDF
    A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad

    Electricity markets: Designing auctions where suppliers have uncertain costs

    Get PDF
    We analyse how the market design influences the bidding behaviour in multi-unit auctions, such as wholesale electricity markets. It is shown that competition improves for increased market transparency and we identify circumstances where the auctioneer prefers uniform to discriminatory pricing. We note that political risks could significantly worsen competition in hydro-dominated markets. It would be beneficial for such markets to have clearly defined contingency plans for extreme market situations.market transparenc

    A Power-efficient Propulsion Method for Magnetic Microrobots

    Get PDF
    Current magnetic systems for microrobotic navigation consist of assemblies of electromagnets, which allow for the wireless accurate steering and propulsion of sub-millimetric bodies. However, large numbers of windings and/or high currents are needed in order to generate suitable magnetic fields and gradients. This means that magnetic navigation systems are typically cumbersome and require a lot of power, thus limiting their application fields. In this paper, we propose a novel propulsion method that is able to dramatically reduce the power demand of such systems. This propulsion method was conceived for navigation systems that achieve propulsion by pulling microrobots with magnetic gradients. We compare this power-efficient propulsion method with the traditional pulling propulsion, in the case of a microrobot swimming in a micro-structured confined liquid environment. Results show that both methods are equivalent in terms of accuracy and the velocity of the motion of the microrobots, while the new approach requires only one ninth of the power needed to generate the magnetic gradients. Substantial equivalence is demonstrated also in terms of the manoeuvrability of user-controlled microrobots along a complex path

    The Morphology and Adhesion Mechanism of Octopus vulgaris Suckers

    Get PDF
    The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa). In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species

    A Review on Vacuum-Powered Fluidic Actuators in Soft Robotics

    Get PDF
    In the past few years, vacuum-powered soft actuators have shown strong potential due to their promising mechanical performance (i.e., fail-safe, fast response, compactness, robustness, jamming, etc.). Indeed, they have been widely exploited in soft robots, for example, grippers and manipulators, wearable devices, locomotion robots, etc. In contrast to inflatable fluidic actuators, the properties of the materials with which they are built have a stronger influence on the kinematic trajectory. For this reason, understanding, both, the geometry and morphology of the core structure, and the material characteristics, is crucial to achieving the desired kinetics and kinematics. In this work, an overview of vacuum-powered soft fluidic actuators is provided, by classifying them as based on morphological design, origami architecture, and structural instability. A variety of constitutive materials and design principles are described and discussed. Strategies for designing vacuum-powered actuators are outlined from a mechanical perspective. Then the main materials and fabrication processes are described, and the most promising approaches are highlighted. Finally, the open challenges for enabling highly deformable and strong soft vacuum-powered actuation are discussed

    Design of a cybernetic hand for perception and action

    Get PDF
    Strong motivation for developing new prosthetic hand devices is provided by the fact that low functionality and controllability—in addition to poor cosmetic appearance—are the most important reasons why amputees do not regularly use their prosthetic hands. This paper presents the design of the CyberHand, a cybernetic anthropomorphic hand intended to provide amputees with functional hand replacement. Its design was bio-inspired in terms of its modular architecture, its physical appearance, kinematics, sensorization, and actuation, and its multilevel control system. Its underactuated mechanisms allow separate control of each digit as well as thumb–finger opposition and, accordingly, can generate a multitude of grasps. Its sensory system was designed to provide proprioceptive information as well as to emulate fundamental functional properties of human tactile mechanoreceptors of specific importance for grasp-and-hold tasks. The CyberHand control system presumes just a few efferent and afferent channels and was divided in two main layers: a high-level control that interprets the user’s intention (grasp selection and required force level) and can provide pertinent sensory feedback and a low-level control responsible for actuating specific grasps and applying the desired total force by taking advantage of the intelligent mechanics. The grasps made available by the high-level controller include those fundamental for activities of daily living: cylindrical, spherical, tridigital (tripod), and lateral grasps. The modular and flexible design of the CyberHand makes it suitable for incremental development of sensorization, interfacing, and control strategies and, as such, it will be a useful tool not only for clinical research but also for addressing neuroscientific hypotheses regarding sensorimotor control
    corecore