170 research outputs found
Recommended from our members
Opportunities for Additional Recovery in University Lands Reservoirs -- Characterization of University Lands Reservoirs, Final Report
In 1984, The University of Texas System funded a Bureau of Economic Geology project, "Characterization of University Lands Reservoirs," to assess in detail the potential for incremental recovery of oil from University Lands reservoirs by extended conventional methods. The objectives of the 5-year project were to quantify the volumes of unrecovered mobile oil remaining in reservoirs on University Lands, to determine whether the specific location of the unrecovered mobile oil could be delineated through integrated geoscience characterization of individual reservoirs, and to develop strategies to optimize recovery of this resource. Unrecovered mobile oil is mobile at reservoir conditions but is prevented from migrating to the wellbore by geologic complexities or heterogeneities. This final report describes results of the 5 years of research conducted on University Lands reservoirs.
One hundred and one reservoirs, each of which has produced more than 1 million stock tank barrels (MMSTB) of oil, were included in a resource assessment and play analysis undertaken (1) to determine the volumes and distribution of all components of the University Lands resource base and (2) to select reservoirs for detailed analysis. These reservoirs collectively contained 7.25 billion barrels (BSTB) of oil at discovery, have produced 1.5 BSTB, and contain 200 MMSTB of reserves. Ultimate recovery at implemented technology is projected to be 24 percent of the original oil in place; thus, 5.5 BSTB of oil will remain after recovery of existing reserves. Unrecovered mobile oil (exclusive of reserves) amounts to 2.2 BSTB, and immobile, or residual, oil totals 3.3 BSTB.Bureau of Economic Geolog
Carbonate-Templated Self-Assembly of an Alkylthiolate-Bridged Cadmium Macrocycle
In the presence of Cd(ClO4)2 and a base, a new mixed N,S-donor alkylthiolate ligand supported both carbonate formation from atmospheric CO2 and the self-assembly of a novel bicapped puckered (CdS)6 molecular wheel. The remarkable stability of the complex was demonstrated by slow intermolecular ligand exchange on the 2J(HH) and J(111/113Cd1H) time scales at elevated temperature. Both CO2 and the base were required to convert amorphous “CdLClO4” precipitated in the absence of air to the carbonate complex. The complex shares structural features with the ζ-carbonic anhydrase class associating cadmium(II) with the biogeochemical cycling of carbon and is the first structurally characterized carbonate complex of any metal involving an alkylthiolate ligand
Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat
To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that were consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near-identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino-acid usage, indicating that hypersalinity enforces an overriding selective pressure on the mat community
Onset of the aerobic nitrogen cycle during the Great Oxidation Event
The rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton
Abundances of Iron-Binding Photosynthetic and Nitrogen-Fixing Proteins of Trichodesmium Both in Culture and In Situ from the North Atlantic
Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean
- …