748 research outputs found
Volcano alert level systems: managing the challenges of effective volcanic crisis communication
Over the last four decades, volcano observatories have adopted a number of different communication strategies for the dissemination of information on changes in volcanic behaviour and potential hazards to a wide range of user groups. These commonly include a standardised volcano alert level system (VALS), used in conjunction with other uni-valent communication techniques (such as information statements, reports and maps) and multi-directional techniques (such as meetings and telephone calls). This research, based on interviews and observation conducted 2007–2009 at the five US Geological Survey (USGS) volcano observatories, and including some of the key users of the VALS, argues for the importance of understanding how communicating volcanic hazard information takes place as an everyday social practice, focusing on the challenges of working across the boundaries between the scientific and decision-making communities. It is now widely accepted that the effective use, value and deployment of information across science-policy interfaces of this kind depend on three criteria: the scientific credibility of the information, its relevance to the needs of stakeholders and the legitimacy of both the information and the processes that produced it. Translation and two-way communication are required to ensure that all involved understand what information is credible and relevant. Findings indicate that whilst VALS play a role in raising awareness of an unfolding situation, supplementary communication techniques are crucial in facilitating situational understanding of that situation, and the uncertainties inherent to its scientific assessment, as well as in facilitating specific responses. In consequence, ‘best practice’ recommendations eschew further standardisation, and focus on the in situ cultivation of dialogue between scientists and stakeholders as a means of ensuring that information, and the processes through which it is produced are perceived to be legitimate by all involved
Radar backscatter measurements from Arctic sea ice during the fall freeze-up
Radar backscatter measurements from sea ice during the fall freeze-up were performed by the United States Coast Guard Icebreaker Polar Star as a part of the International Arctic Ocean Expedition (IAOE'91) from Aug. to Sep. 1991. The U.S. portion of the experiment took place on board the Polar Star and was referred to as TRAPOLEX '91 (Transpolar expedition) by some investigators. Before prematurely aborting its mission because of mechanical failure of her port shaft, the Polar Star reached 84 deg 57 min N latitude at 35 deg E longitude. The ship was in the ice (greater than 50 percent coverage) from 14 Aug. until 3 Sep. and was operational for all but 6 days due to two instances of mechanical problems with the port shaft. The second was fatal to the ship's participation in the expedition. During the expedition, radar backscatter was measured at C-band under a variety of conditions. These included measurements from young ice types as well as from multiyear and first-/second-year sea ice during the fall freeze-up. The sea ice types were determined by measurement of the ice properties at several of the stations and by visual inspection on others. Radar backscatter measurements were performed over a large portion of the ship's transit into the Arctic ice pack. These were accompanied by in situ sea ice property characterization by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) at several stations and, when snow was present, its properties were documented by The Microwave Group, Ottawa River (MWG)
Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system
Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons
Plans to eradicate invasive mammals on an island inhabited by humans and domestic animals (Corvo, Azores, Portugal)
Oppel, S., Beaven, B.M., Bolton, M., Bodey, T.W., Geraldes, P., Oliveira, N., Hervias, S., Henriques, A., Silva, C
Characterizing Residue-Bilayer Interactions Using Gramicidin A as a Scaffold and Tryptophan Substitutions as Probes
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/acs.jctc.7b00400.Previous experiments have shown that the lifetime of a gramicidin A dimer channel (which forms from two non-conducting monomers) in a lipid bilayer is modulated by mutations of the tryptophan (Trp) residues at the bilayer-water interface. We explore this further using extensive molecular dynamics simulations of various gA dimer and monomer mutants at the Trp positions in phosphatidylcholine bilayers with different tail lengths. gA interactions with the surrounding bilayer are strongly modulated by mutating these Trp residues. There are three principal effects: eliminating residue hydrogen bonding ability (i.e., reducing the channel-monolayer coupling strength) reduces the extent of the bilayer deformation caused by the assembled dimeric channel; a residue’s size and geometry affects its orientation, leading to different hydrogen bonding partners; and increasing a residue’s hydrophobicity increases the depth of gA monomer insertion relative to the bilayer center, thereby increasing the lipid bending frustration
Magnetically Controlled Growing Rods: The Experience of Mechanical Failure from a Single Center Consecutive Series of 28 Children with a Minimum Follow-up of 2 Years
Study Design Retrospective observational study of a continuous series of 28 children. Purpose To determine the mechanical failure rate in our cohort of children treated with magnetically controlled growth rods (MCGRs). Overview of Literature Previous studies report a MCGR mechanical failure rate of 0%–75%. Methods All patients with MCGR implantation between 2012 and 2015 were examined and followed up for a minimum of 2 years. A retrospective evaluation of contemporaneously documented clinical findings was conducted, and radiographs were retrospectively examined for mechanical failure. The external remote controller (ERC)-specified length achieved in the clinic was compared to the length measured on subsequent radiographs. Results Fourteen mechanical failures were identified in 28 children (50%) across a total of 52 rods (24 pairs and four single constructs). Mechanical failures were due to: failure to lengthen under general anesthesia (seven children), actuator pin fracture (four), rod fracture (one), foundation screw failure (one), and ran out of rod length (one). Of the 14 mechanical failures, six were treated with final fusion operations (reflecting limited further growth potential), and eight patients were treated with the intention for further lengthening. We therefore consider these eight patients to represent the true incidence of mechanical failure in our cohort (29%). The difference between the ERC length and radiographic length was found to be identical in 11% cases; 35% were overestimates, and 54% were underestimates. The median underestimate was 2.45 mm whereas the median overestimate was 3.1 mm per distraction episode. In total, 95% of all ERC distractions were within ±10 mm of the radiographic length achieved over a median of nine distraction episodes. Conclusions Our series is the most comprehensive MCGR series published to date, and we present a mechanical failure rate of 29%. Clinicians should be mindful of the discrepancies between ERC length and radiographic measurements of rod length; other modalities may be more helpful in this regard
- …