406 research outputs found

    Hydrophilic polymer embolism identified in brain tumor specimens following Wada testing: A report of 2 cases

    Get PDF
    Hydrophilic polymers are commonly used as coatings on intravascular medical devices. As intravascular pro-cedures continue to increase in frequency, the risk of embolization of this material throughout the body has become evident. These emboli may be discovered incidentally but can result in serious complications includ-ing death. Here, we report the first two cases of hydrophilic polymer embolism (HPE) identified on brain tu-mor resection following Wada testing. One patient experienced multifocal vascular complications and diffuse cerebral edema, while the other had an uneventful postoperative course. Wada testing is frequently per-formed during preoperative planning prior to epilepsy surgery or the resection of tumors in eloquent brain regions. These cases demonstrate the need for increased recognition of this histologic finding to enable fur-ther correlation with clinical outcomes

    The genetic contribution to severe post-traumatic osteoarthritis

    Get PDF
    Objective: to compare the combined role of genetic variants loci associated with risk of knee or hip osteoarthritis (OA) in post-traumatic (PT) and non-traumatic (NT) cases of clinically severe OA leading to total joint replacement. Methods: A total of 1590 controls, 2168 total knee replacement (TKR) cases (33.2% PT) and 1567 total hip replacement (THR) cases (8.7% PT) from 2 UK cohorts were genotyped for 12 variants previously reported to be reproducibly associated with risk of knee or hip OA. A genetic risk score was generated and the association with PT and NT TKR and THR was assessed adjusting for covariates. Results: For THR, each additional genetic risk variant conferred lower risk among PT cases (OR=1.07, 95% CI 0.96 to 1.19; p=0.24) than NT cases (OR 1.11, 95% CI 1.06 to 1.17; p=1.55×10−5). In contrast, for TKR, each risk variant conferred slightly higher risk among PT cases (OR 1.12, 95% CI 1.07 to 1.19; p=1.82×10−5) than among NT cases (OR 1.08, 95% CI 1.03 to 1.1; p=0.00063). Conclusions: Based on the variants reported to date PT TKR cases have at least as high a genetic contribution as NT cases

    New portable tool to screen vestibular and visual function—National Institutes of Health Toolbox initiative

    Get PDF
    As part of the National Institutes of Health Toolbox initiative, we developed a low-cost, easy-to-administer, and time-efficient test of vestibular and visual function. A computerized test of dynamic visual acuity (cDVA) was used to measure the difference in visual acuity between head still and moving in yaw. Participants included 318 individuals, aged 3 to 85 years (301 without and 17 with vestibular pathology). Adults used Early Treatment of Diabetic Retinopathy Study (ETDRS) optotypes; children used ETDRS, Lea, and HOTV optotypes. Bithermal calorics, rotational chair, and light box testing were used to validate the cDVA. Analysis revealed that the cDVA test is reliable for static (intraclass correlation coefficient [ICC] \u3e/= 0.64) and dynamic (ICC \u3e/= 0.43–0.75) visual acuity. Children younger than 6 years old were more likely to complete cDVA with Lea optotypes, but reliability and correlation with ETDRS was better using HOTV optotypes. The high correlation between static acuity and light box test scores (r = 0.795), significant difference of cDVA scores between those with and without pathology (

    Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease:a mendelian randomisation study

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease accounting for 1% of UK deaths. In the familial form of pulmonary fibrosis, causal genes have been identified in about 30% of cases, and a majority of these causal genes are associated with telomere maintenance. Prematurely shortened leukocyte telomere length is associated with IPF and chronic obstructive pulmonary disease (COPD), a disease with similar demographics and shared risk factors. Using mendelian randomisation, we investigated evidence supporting a causal role for short telomeres in IPF and COPD. Methods: Mendelian randomisation inference of telomere length causality was done for IPF (up to 1369 cases) and COPD (13 538 cases) against 435 866 controls of European ancestry in UK Biobank. Polygenic risk scores were calculated and two-sample mendelian randomisation analyses were done using seven genetic variants previously associated with telomere length, with replication analysis in an IPF cohort (2668 cases vs 8591 controls) and COPD cohort (15 256 cases vs 47 936 controls). Findings: In the UK Biobank, a genetically instrumented one-SD shorter telomere length was associated with higher odds of IPF (odds ratio [OR] 4·19, 95% CI 2·33–7·55; p=0·0031) but not COPD (1·07, 0·88–1·30; p=0·51). Similarly, an association was found in the IPF replication cohort (12·3, 5·05–30·1; p=0·0015) and not in the COPD replication cohort (1·04, 0·71–1·53; p=0·83). Meta-analysis of the two-sample mendelian randomisation results provided evidence inferring that shorter telomeres cause IPF (5·81 higher odds of IPF, 95% CI 3·56–9·50; p=2·19 × 10−12). There was no evidence to infer that telomere length caused COPD (OR 1·07, 95% CI 0·90–1·27; p=0·46). Interpretation: Cellular senescence is hypothesised as a major driving force in IPF and COPD; telomere shortening might be a contributory factor in IPF, suggesting divergent mechanisms in COPD. Defining a key role for telomere shortening enables greater focus in telomere-related diagnostics, treatments, and the search for a cure in IPF. Investigation of therapies that improve telomere length is warranted. Funding: Medical Research Council.</p

    Approximate Bayesian Computation: a nonparametric perspective

    Full text link
    Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well-suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s_obs from the data and simulating summary statistics for different values of the parameter theta. The posterior distribution is then approximated by an estimator of the conditional density g(theta|s_obs). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. To make this relationship as homoscedastic as possible, we propose to use transformations of the summary statistics. In different examples borrowed from the population genetics and epidemiological literature, we show the potential of the methods with adjustment and of the transformations of the summary statistics. Supplemental materials containing the details of the proofs are available online

    ENMTools 1.0: an R package for comparative ecological biogeography

    Get PDF
    The ENMTools software package was introduced in 2008 as a platform for making measurements on environmental niche models (ENMs, frequently referred to as species distribution models or SDMs), and for using those measurements in the context of newly developed Monte Carlo tests to evaluate hypotheses regarding niche evolution. Additional functionality was later added for model selection and simulation from ENMs, and the software package has been quite widely used. ENMTools was initially implemented as a Perl script, which was also compiled into an executable file for various platforms. However, the package had a number of significant limitations; it was only designed to fit models using Maxent, it relied on a specific Perl distribution to function, and its internal structure made it difficult to maintain and expand. Subsequently, the R programming language became the platform of choice for most ENM studies, making ENMTools less usable for many practitioners. Here we introduce a new R version of ENMTools that implements much of the functionality of its predecessor as well as numerous additions that simplify the construction, comparison and evaluation of niche models. These additions include new metrics for model fit, methods of measuring ENM overlap, and methods for testing evolutionary hypotheses. The new version of ENMTools is also designed to work within the expanding universe of R tools for ecological biogeography, and as such includes greatly simplified interfaces for analyses from several other R packages

    msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although testing for simultaneous divergence (vicariance) across different population-pairs that span the same barrier to gene flow is of central importance to evolutionary biology, researchers often equate the gene tree and population/species tree thereby ignoring stochastic coalescent variance in their conclusions of temporal incongruence. In contrast to other available phylogeographic software packages, msBayes is the only one that analyses data from multiple species/population pairs under a hierarchical model.</p> <p>Results</p> <p>msBayes employs approximate Bayesian computation (ABC) under a hierarchical coalescent model to test for simultaneous divergence (TSD) in multiple co-distributed population-pairs. Simultaneous isolation is tested by estimating three hyper-parameters that characterize the degree of variability in divergence times across co-distributed population pairs while allowing for variation in various within population-pair demographic parameters (sub-parameters) that can affect the coalescent. msBayes is a software package consisting of several C and R programs that are run with a Perl "front-end".</p> <p>Conclusion</p> <p>The method reasonably distinguishes simultaneous isolation from temporal incongruence in the divergence of co-distributed population pairs, even with sparse sampling of individuals. Because the estimate step is decoupled from the simulation step, one can rapidly evaluate different ABC acceptance/rejection conditions and the choice of summary statistics. Given the complex and idiosyncratic nature of testing multi-species biogeographic hypotheses, we envision msBayes as a powerful and flexible tool for tackling a wide array of difficult research questions that use population genetic data from multiple co-distributed species. The msBayes pipeline is available for download at <url>http://msbayes.sourceforge.net/</url> under an open source license (GNU Public License). The msBayes pipeline is comprised of several C and R programs that are run with a Perl "front-end" and runs on Linux, Mac OS-X, and most POSIX systems. Although the current implementation is for a single locus per species-pair, future implementations will allow analysis of multi-loci data per species pair.</p

    Generation of Human Antigen-Specific Monoclonal IgM Antibodies Using Vaccinated “Human Immune System” Mice

    Get PDF
    Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the 'humanization' of murine monoclonal antibodies (mAbs) is a time-consuming and expensive process that has the inherent drawback of potentially altering antigenic specificity and/or affinity. The immortalization of human B cells represents an alternative for obtaining human mAbs, but relies on the availability of biological samples from vaccinated individuals or convalescent patients. In this work we describe a novel approach to generate fully human mAbs by combining a humanized mouse model with a new B cell immortalization technique. After transplantation with CD34+CD38⁻ human hematopoietic progenitor cells, BALB/c Rag2⁻/⁻IL-2Rγc⁻/⁻ mice acquire a human immune system and harbor B cells with a diverse IgM repertoire. "Human Immune System" mice were then immunized with two commercial vaccine antigens, tetanus toxoid and hepatitis B surface antigen. Sorted human CD19+CD27+ B cells were retrovirally transduced with the human B cell lymphoma (BCL)-6 and BCL-XL genes, and subsequently cultured in the presence of CD40-ligand and IL-21. This procedure allows generating stable B cell receptor-positive B cells that secrete immunoglobulins. We recovered stable B cell clones that produced IgM specific for tetanus toxoid and the hepatitis B surface antigen, respectively. This work provides the proof-of-concept for the usefulness of this novel method based on the immunization of humanized mice for the rapid generation of human mAbs against a wide range of antigen

    Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy.

    Get PDF
    Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention
    corecore