38 research outputs found

    Rainfall retrieval using Spinning Enhanced Visible and Infrared Imager (SEVIRI-MSG) and Cloud Physical Properties (CPP) algorithm : validation over Belgium and applications

    Full text link
    Precipitation is the main variable of the water cycle and the water resources availability. Despite numerous available methods, precipitation measurements are still insufficient to quantify with certainty ongoing changes and to provide data for numerical models validation. Roebeling & Holleman (2009) presented the Cloud Physical Properties algorithm using data from the SEVIRI instrument on board Meteosat Second Generation. The goal of present study is to extend previous validations and verify the algorithm performances throughout yearly and daily cycles in order to identify possible use and applications. A seven-years data set of parallax-shift corrected clouds and precipitation data over Western Europe have therefore been processed using CPP algorithm. Results are encouraging for both precipitation areas delimitation and rain rates assessment. However, rain rates estimation are strongly affected by sun zenith angle with increasing overestimation for sza above 60°. Systematic errors also affect the retrieval of cloud properties for very thick clouds with an overestimation of extreme precipitation events

    Satellite downlink scheduling problem: A case study

    Get PDF
    The synthetic aperture radar (SAR) technology enables satellites to efficiently acquire high quality images of the Earth surface. This generates significant communication traffic from the satellite to the ground stations, and, thus, image downlinking often becomes the bottleneck in the efficiency of the whole system. In this paper we address the downlink scheduling problem for Canada's Earth observing SAR satellite, RADARSAT-2. Being an applied problem, downlink scheduling is characterised with a number of constraints that make it difficult not only to optimise the schedule but even to produce a feasible solution. We propose a fast schedule generation procedure that abstracts the problem specific constraints and provides a simple interface to optimisation algorithms. By comparing empirically several standard meta-heuristics applied to the problem, we select the most suitable one and show that it is clearly superior to the approach currently in use.Comment: 23 page

    Modélisation du rayonnement solaire en Belgique à l'aide de Modèles Climatiques Régionaux dans le cadre d'un système de prévision "day-ahead" de la production photovoltaïque

    Full text link
    WRF-ARW and MAR climate models performances for the modelling of solar irradiances over Belgium are evaluated using in-situ measurements at Sart-Tilman and Daussoulx. Different WRF-ARW settings are tested. Sigmoid model proposed by Ruis-Ariaz etal. (2010) is used to decompose solar irradiance into direct and diffuse fraction. The performance of this model using measured and modelled global irradiances is also evaluated.PREMASO

    Assessing bias corrections of oceanic surface conditions for atmospheric models

    Get PDF
    Future sea surface temperature and sea-ice concentration from coupled ocean–atmosphere general circulation models such as those from the CMIP5 experiment are often used as boundary forcings for the downscaling of future climate experiments. Yet, these models show some considerable biases when compared to the observations over present climate. In this paper, existing methods such as an absolute anomaly method and a quantile–quantile method for sea surface temperature (SST) as well as a look-up table and a relative anomaly method for sea-ice concentration (SIC) are presented. For SIC, we also propose a new analogue method. Each method is objectively evaluated with a perfect model test using CMIP5 model experiments and some real-case applications using observations. We find that with respect to other previously existing methods, the analogue method is a substantial improvement for the bias correction of future SIC. Consistency between the constructed SST and SIC fields is an important constraint to consider, as is consistency between the prescribed sea-ice concentration and thickness; we show that the latter can be ensured by using a simple parameterisation of sea-ice thickness as a function of instantaneous and annual minimum SIC.</p

    Twentieth century temperature and snow cover changes in the French Alps

    Full text link
    International audienceChanges in snow cover associated with the warming of the French Alps greatly influence social-ecological systems through their impact on water resources, mountain ecosystems, economic activities, and glacier mass balance. In this study, we investigated trends in snow cover and temperature over the twentieth century using climate model and reanalysis data. The evolution of temperature, precipitation and snow cover in the European Alps has been simulated with the Modèle Atmospherique Régional (MAR) applied with a 7-km horizontal resolution and driven by ERA-20C (1902-2010) and ERA5 (1981–2018) reanalyses data. Snow cover duration and snow water equivalent (SWE) simulated with MAR are compared to the SAFRAN - SURFEX-ISBA-Crocus - MEPRA meteorological and snow cover reanalysis (S2M) data across the French Alps (1958–2018) and in situ glacier mass balance measurements. MAR outputs provide a realistic distribution of SWE and snow cover duration as a function of elevation in the French Alps. Large disagreements are found between the datasets in terms of absolute warming trends over the second part of the twentieth century. MAR and S2M trends are in relatively good agreement for the decrease in snow cover duration, with higher decreases at low elevation ( \sim ∼ 5–10%/decade). Consistent with other studies, the highest warming rates in MAR occur at low elevations ( 2000 m a.s.l) in summer. In spring, warming trends show a maximum at intermediate elevations (1500 to 1800 m). Our results suggest that higher warming at these elevations is mostly linked to the snow-albedo feedback in spring and summer caused by the disappearance of snow cover at higher elevation during these seasons. This work has evidenced that depending on the season and the period considered, enhanced warming at higher elevations may or may not be found. Additional analysis in a physically comprehensive way and more high-quality dataset, especially at high elevations, are still required to better constrain and quantify climate change impacts in the Alps and its relation to elevation

    Changement climatique en Antarctique : études à l'aide d'un modèle atmosphérique de circulation générale à haute résolution régionale

    No full text
    The increase of the Antarctic ice-sheet surface mass balance due to rise in snowfall is the only expected negative contribution to sea-level rise in the course of the 21st century within the context of global warming induced by mankind. Dynamical downscaling of climate projections provided by coupled ocean-atmosphere models is the most commonly used method to assess the future evolution of the Antarctic climate. Nevertheless, large uncertainties remain in the application of this method, particularly because of large biases in coupled models for oceanic surface conditions and atmospheric large-scale circulation at Southern Hemisphere high latitudes.In the first part of this work, different bias-correction methods for oceanic surface conditions have been evaluated. The results have allowed to select a quantile-quantile method for sea surface temperature and an analog method for sea-ice concentration. Because of the strong sensitivity of Antarctic surface climate to the variations of sea-ice extents in the Southern Ocean, oceanic surface conditions provided by two coupled models, NorESM1-M and MIROC-ESM, showing clearly different trends (respectively -14 and -45%) on winter sea-ice extent have been selected. Oceanic surface conditions of the ``business as usual" scenario (RCP8.5) coming from these two models have been corrected in order to force the global atmospheric model ARPEGE.In the following, ARPEGE has been used in a stretched-grid configuration, allowing to reach an horizontal resolution around 40 kilometers on Antarctica. For historical climate (1981-2010), the model was driven by observed oceanic surface conditions as well as by those from MIROC-ESM and NorESM1-M historical simulation. For late 21st century (2071-2100), original and bias corrected oceanic conditions from the latter two model have been used. The evaluation for present climate has evidenced excellent ARPEGE skills for surface climate and surface mass balance as well as large remaining errors on large-scale atmospheric circulation even when using observed oceanic surface conditions. For future climate, the use of bias-corrected MIROC-ESM oceanic forcings has yielded an additionally significant increase in winter temperatures and in annual surface mass balance at the continent-scale.In the end, ARPEGE has been corrected at run-time using a climatology of tendency errors coming from an ARPEGE simulation driven by climate reanalyses. The application of this method for present climate has dramatically improved the modelling of the atmospheric circulation and antarctic surface climate. The application for the future suggests significant additional warming (~ 0.7 to +0.9 C) and increase in precipitation (~ +6 to +9 %) with respect to the scenarios realized without atmospheric bias correction. Driving regional climate models or ice dynamics model with corrected ARPEGE scenarios is to explored in regards of the potentially large-impacts on the Antarctic ice-sheet and its contribution to sea-level rise.L'augmentation du bilan de masse en surface de la calotte polaire Antarctique causée par celle des chutes de neige est la seule contribution négative à l'élévation du niveau de mer attendue dans le courant du 21ème siècle dans le cadre du réchauffement climatique causé par les activités humaines. La régionalisation dynamique de projections climatiques issues de modèles couplés océans-atmosphère est la méthode la plus couramment utilisée pour estimer les variations futures du climat Antarctique. Néanmoins, de nombreuses incertitudes subsistent suite à l'application de ces méthodes, en particulier en raison des biais conséquents sur les conditions océaniques de surface et sur la circulation atmosphérique aux hautes latitudes de l’Hémisphère Sud dans les modèles couplés.Dans la première partie de ce travail, différentes méthodes de corrections de biais des conditions océanique de surface ont été évaluées. Les résultats ont permis de retenir une méthode quantile-quantile pour la température de surface de l'océan et une méthode d'analogues pour la concentration en glace de mer. En raison de la forte sensibilité du climat future Antarctique aux variations de couverture de glace de mer dans l'Océan Austral, les conditions océaniques issues de deux modèles couplés, NorESM1-M et MIROC-ESM, présentant des diminutions d’étendues de glace de mer hivernales largement différentes (-14 et -45%) ont été retenues. Les conditions océaniques provenant d'un scénario RCP8.5 de ces deux modèles ont été corrigées afin de forcer le modèle atmosphérique global ARPEGE.Par la suite, ARPEGE a été utilisé dans une configuration grille-étirée, permettant d'atteindre une résolution horizontale de 40 kilomètres sur l'Antarctique. Il a été contraint aux limites par les conditions océaniques de surface observées et celles issues des simulations historiques des modèles NorESM1-M et MIROC-ESM pour la période récente (1981-2010). Pour la fin du 21ème siècle (2071-2100), les forçages océaniques originaux et corrigés issus de ces deux derniers modèles ont été utilisés. L'évaluation pour le présent a permis de mettre en évidence, la capacité du modèle ARPEGE de reproduire le climat et le bilan de masse de surface Antarctique ainsi que la persistance d'erreurs substantielles sur la circulation atmosphérique y compris dans la simulation forcée par les conditions océaniques observées. Pour le climat futur, l'utilisation des forçages océaniques MIROC-ESM corrigés a engendré des augmentations supplémentaires significatives à l'échelle continentale pour les températures hivernales et le bilan de masse annuel.Enfin, ARPEGE a été corrigé en ligne, à l'aide d'une climatologie des termes de rappel du modèle issus d'une simulation guidée par les réanalyses climatologiques. L'application de cette méthode sur la période récente a très largement amélioré la modélisation de la circulation atmosphérique et du climat de surface Antarctique. L'application pour le climat futur suggère des augmentations de températures (+0.7 à +0.9 C) et de précipitations (+6 à +9%) supplémentaires par rapport à celles issues des scénarios réalisés sans correction atmosphérique. Le forçage de modèles climatiques régionaux ou de dynamique glaciaire avec les scénarios ARPEGE corrigés est à explorer au regard des impacts potentiellement importants pour la calotte Antarctique et sa contribution à l'élévation du niveau des mers

    Antarctic climate change : studies with an atmospheric general circulation model at a high regional resolution

    No full text
    L'augmentation du bilan de masse en surface de la calotte polaire Antarctique causée par celle des chutes de neige est la seule contribution négative à l'élévation du niveau de mer attendue dans le courant du 21ème siècle dans le cadre du réchauffement climatique causé par les activités humaines. La régionalisation dynamique de projections climatiques issues de modèles couplés océans-atmosphère est la méthode la plus couramment utilisée pour estimer les variations futures du climat Antarctique. Néanmoins, de nombreuses incertitudes subsistent suite à l'application de ces méthodes, en particulier en raison des biais conséquents sur les conditions océaniques de surface et sur la circulation atmosphérique aux hautes latitudes de l’Hémisphère Sud dans les modèles couplés.Dans la première partie de ce travail, différentes méthodes de corrections de biais des conditions océanique de surface ont été évaluées. Les résultats ont permis de retenir une méthode quantile-quantile pour la température de surface de l'océan et une méthode d'analogues pour la concentration en glace de mer. En raison de la forte sensibilité du climat future Antarctique aux variations de couverture de glace de mer dans l'Océan Austral, les conditions océaniques issues de deux modèles couplés, NorESM1-M et MIROC-ESM, présentant des diminutions d’étendues de glace de mer hivernales largement différentes (-14 et -45%) ont été retenues. Les conditions océaniques provenant d'un scénario RCP8.5 de ces deux modèles ont été corrigées afin de forcer le modèle atmosphérique global ARPEGE.Par la suite, ARPEGE a été utilisé dans une configuration grille-étirée, permettant d'atteindre une résolution horizontale de 40 kilomètres sur l'Antarctique. Il a été contraint aux limites par les conditions océaniques de surface observées et celles issues des simulations historiques des modèles NorESM1-M et MIROC-ESM pour la période récente (1981-2010). Pour la fin du 21ème siècle (2071-2100), les forçages océaniques originaux et corrigés issus de ces deux derniers modèles ont été utilisés. L'évaluation pour le présent a permis de mettre en évidence, la capacité du modèle ARPEGE de reproduire le climat et le bilan de masse de surface Antarctique ainsi que la persistance d'erreurs substantielles sur la circulation atmosphérique y compris dans la simulation forcée par les conditions océaniques observées. Pour le climat futur, l'utilisation des forçages océaniques MIROC-ESM corrigés a engendré des augmentations supplémentaires significatives à l'échelle continentale pour les températures hivernales et le bilan de masse annuel.Enfin, ARPEGE a été corrigé en ligne, à l'aide d'une climatologie des termes de rappel du modèle issus d'une simulation guidée par les réanalyses climatologiques. L'application de cette méthode sur la période récente a très largement amélioré la modélisation de la circulation atmosphérique et du climat de surface Antarctique. L'application pour le climat futur suggère des augmentations de températures (+0.7 à +0.9 C) et de précipitations (+6 à +9%) supplémentaires par rapport à celles issues des scénarios réalisés sans correction atmosphérique. Le forçage de modèles climatiques régionaux ou de dynamique glaciaire avec les scénarios ARPEGE corrigés est à explorer au regard des impacts potentiellement importants pour la calotte Antarctique et sa contribution à l'élévation du niveau des mers.The increase of the Antarctic ice-sheet surface mass balance due to rise in snowfall is the only expected negative contribution to sea-level rise in the course of the 21st century within the context of global warming induced by mankind. Dynamical downscaling of climate projections provided by coupled ocean-atmosphere models is the most commonly used method to assess the future evolution of the Antarctic climate. Nevertheless, large uncertainties remain in the application of this method, particularly because of large biases in coupled models for oceanic surface conditions and atmospheric large-scale circulation at Southern Hemisphere high latitudes.In the first part of this work, different bias-correction methods for oceanic surface conditions have been evaluated. The results have allowed to select a quantile-quantile method for sea surface temperature and an analog method for sea-ice concentration. Because of the strong sensitivity of Antarctic surface climate to the variations of sea-ice extents in the Southern Ocean, oceanic surface conditions provided by two coupled models, NorESM1-M and MIROC-ESM, showing clearly different trends (respectively -14 and -45%) on winter sea-ice extent have been selected. Oceanic surface conditions of the ``business as usual" scenario (RCP8.5) coming from these two models have been corrected in order to force the global atmospheric model ARPEGE.In the following, ARPEGE has been used in a stretched-grid configuration, allowing to reach an horizontal resolution around 40 kilometers on Antarctica. For historical climate (1981-2010), the model was driven by observed oceanic surface conditions as well as by those from MIROC-ESM and NorESM1-M historical simulation. For late 21st century (2071-2100), original and bias corrected oceanic conditions from the latter two model have been used. The evaluation for present climate has evidenced excellent ARPEGE skills for surface climate and surface mass balance as well as large remaining errors on large-scale atmospheric circulation even when using observed oceanic surface conditions. For future climate, the use of bias-corrected MIROC-ESM oceanic forcings has yielded an additionally significant increase in winter temperatures and in annual surface mass balance at the continent-scale.In the end, ARPEGE has been corrected at run-time using a climatology of tendency errors coming from an ARPEGE simulation driven by climate reanalyses. The application of this method for present climate has dramatically improved the modelling of the atmospheric circulation and antarctic surface climate. The application for the future suggests significant additional warming (~ 0.7 to +0.9 C) and increase in precipitation (~ +6 to +9 %) with respect to the scenarios realized without atmospheric bias correction. Driving regional climate models or ice dynamics model with corrected ARPEGE scenarios is to explored in regards of the potentially large-impacts on the Antarctic ice-sheet and its contribution to sea-level rise
    corecore