304 research outputs found
Usage Comparison of Print and Electronic Theses and Dissertations at The University of Southern Mississippi
The University of Southern Mississippi houses many theses and dissertations generated throughout USM\u27s history. The launch of our institutional repository offered an opportunity to increase exposure by incorporating an ETD publishing process and platform. This poster analyzes the circulation statistics of printed theses and dissertations compared with the increased usage of ETDs in Aquila, the institutional repository, and showcases the remarkable exposure ETDs can achieve through an IR
Recommended from our members
Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines
Catalytic synthesis of nonracemic P-chiral phosphine derivatives remains a significant challenge. Here we report Cu-catalyzed enantioselective arylation of secondary phosphine oxides with diaryliodonium salts for the synthesis of tertiary phosphine oxides with high enantiomeric excess. The new process is demonstrated on a wide range of substrates and leads to products that are well-established P-chiral catalysts and ligands.We are grateful to the European Commission for a Marie Curie International Outgoing Fellowship (R.J.P.), the ERC (R.B.), the EPSRC, and the Royal Society (M.J.G.) for fellowships. Mass spectrometry data were acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University
Nonlinear electron-phonon coupling in doped manganites
We employ time-resolved resonant x-ray diffraction to study the melting of
charge order and the associated insulator-metal transition in the doped
manganite PrCaMnO after resonant excitation of a
high-frequency infrared-active lattice mode. We find that the charge order
reduces promptly and highly nonlinearly as function of excitation fluence.
Density functional theory calculations suggest that direct anharmonic coupling
between the excited lattice mode and the electronic structure drive these
dynamics, highlighting a new avenue of nonlinear phonon control
Structural and magnetic dynamics of a laser induced phase transition in FeRh
We use time-resolved x-ray diffraction and magnetic optical Kerr effect to
study the laser induced antiferromagnetic to ferromagnetic phase transition in
FeRh. The structural response is given by the nucleation of independent
ferromagnetic domains (\tau_1 ~ 30ps). This is significantly faster than the
magnetic response (\tau_2 ~ 60ps) given by the subsequent domain realignment.
X-ray diffraction shows that the two phases co-exist on short time-scales and
that the phase transition is limited by the speed of sound. A nucleation model
describing both the structural and magnetic dynamics is presented.Comment: 5 pages, 3 figures - changed to reflect version accepted for PR
A link between eumelanism and calcium physiology in the barn owl.
In many animals, melanin-based coloration is strongly heritable and is largely insensitive to the environment and body condition. According to the handicap principle, such a trait may not reveal individual quality because the production of different melanin-based colorations often entails similar costs. However, a recent study showed that the production of eumelanin pigments requires relatively large amounts of calcium, potentially implying that melanin-based coloration is associated with physiological processes requiring calcium. If this is the case, eumelanism may be traded-off against other metabolic processes that require the same elements. We used a correlative approach to examine, for the first time, this proposition in the barn owl, a species in which individuals vary in the amount, size, and blackness of eumelanic spots. For this purpose, we measured calcium concentration in the left humerus of 85 dead owls. Results showed that the humeri of heavily spotted individuals had a higher concentration of calcium. This suggests either that plumage spottiness signals the ability to absorb calcium from the diet for both eumelanin production and storage in bones, or that lightly spotted individuals use more calcium for metabolic processes at the expense of calcium storage in bones. Our study supports the idea that eumelanin-based coloration is associated with a number of physiological processes requiring calcium
A link between eumelanism and calcium physiology in the barn owl.
In many animals, melanin-based coloration is strongly heritable and is largely insensitive to the environment and body condition. According to the handicap principle, such a trait may not reveal individual quality because the production of different melanin-based colorations often entails similar costs. However, a recent study showed that the production of eumelanin pigments requires relatively large amounts of calcium, potentially implying that melanin-based coloration is associated with physiological processes requiring calcium. If this is the case, eumelanism may be traded-off against other metabolic processes that require the same elements. We used a correlative approach to examine, for the first time, this proposition in the barn owl, a species in which individuals vary in the amount, size, and blackness of eumelanic spots. For this purpose, we measured calcium concentration in the left humerus of 85 dead owls. Results showed that the humeri of heavily spotted individuals had a higher concentration of calcium. This suggests either that plumage spottiness signals the ability to absorb calcium from the diet for both eumelanin production and storage in bones, or that lightly spotted individuals use more calcium for metabolic processes at the expense of calcium storage in bones. Our study supports the idea that eumelanin-based coloration is associated with a number of physiological processes requiring calcium
Watching the birth of a charge density wave order: diffraction study on nanometer-and picosecond-scales
Femtosecond time-resolved X-ray diffraction is used to study a photo-induced
phase transition between two charge density wave (CDW) states in 1T-TaS,
namely the nearly commensurate (NC) and the incommensurate (I) CDW states.
Structural modulations associated with the NC-CDW order are found to disappear
within 400 fs. The photo-induced I-CDW phase then develops through a
nucleation/growth process which ends 100 ps after laser excitation. We
demonstrate that the newly formed I-CDW phase is fragmented into several
nanometric domains that are growing through a coarsening process. The
coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth
law, which describes the ordering kinetics in systems exhibiting a
non-conservative order parameter.Comment: 6 pages, 5 figure
Chaos in free electron laser oscillators
The chaotic nature of a storage-ring Free Electron Laser (FEL) is
investigated. The derivation of a low embedding dimension for the dynamics
allows the low-dimensionality of this complex system to be observed, whereas
its unpredictability is demonstrated, in some ranges of parameters, by a
positive Lyapounov exponent. The route to chaos is then explored by tuning a
single control parameter, and a period-doubling cascade is evidenced, as well
as intermittence.Comment: Accepted in EPJ
Ultrafast Laser-Induced Melting of Long-Range Magnetic Order in Multiferroic TbMnO3
We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray
diffraction probe measurements to investigate the coupling between the
photoexcited electronic system and the spin cycloid magnetic order in
multiferroic TbMnO3 at low temperatures. We observe melting of the long range
antiferromagnetic order at low excitation fluences with a decay time constant
of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously
observed in other systems. To explain the data we propose a simple model of the
melting process where the pump laser pulse directly excites the electronic
system, which then leads to an increase in the effective temperature of the
spin system via a slower relaxation mechanism. Despite this apparent increase
in the effective spin temperature, we do not observe changes in the wavevector
q of the antiferromagnetic spin order that would typically correlate with an
increase in temperature under equilibrium conditions. We suggest that this
behavior results from the extremely low magnon group velocity that hinders a
change in the spin-spiral wavevector on these time scales.Comment: 9 pages, 4 figure
- …